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B ntro to ML for engineers

Last week

» Define ML ingredients
= Translate a problem to ML
* Supervised vs. Unsupervised
» Regression vs. Classification
* Parametric vs. Non-parametric
= Linear regression
= Non-parametric KNN

= Logistic regression

N
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Today

» Quick recap of classification with Logistic Regression
» Underfitting & Overfitting
» Performance Metrics

* Role of representation

W
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4. Role of Input
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Underfitting & Overfitting
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Underfitting & Overfitting

Introduction

Goal of supervised ML models: generalise well on new data (based on
the patterns learned from known data).

Olga Fink /Alexandre Alanhi

Two situations where It fails:
 Underfitting
» QOverfitting

* @ I

»

Underfitting Desired Overfitting
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Underfitting & Overfitting
Underfitting

Underfitting: the model doesn't fit well on the training data.

Reason: model too simple — can't capture the underlying patterns within
the data.

N
-
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Underfitting & Overfitting
Underfitting

Underfitting: the model doesn't fit well on the training data.

Olga Fink /Alexandre Alanhi

Reason: model too simple — can't capture the underlying patterns within
the data.

Values =
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The model (the line) doesn't capture the U shape of the data set.
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Underfitting & Overfitting
Underfitting

Underfitting: the model doesn't fit well on the training data.

Olga Fink /Alexandre Alanhi

Reason: model too simple — can't capture the underlying patterns within
the data.

Values =

The model (the line) doesn't capture the U shape of the data set.

— Solution: choose a more complex algorithm/model to better fit the data.
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Underfitting & Overfitting

Overfitting - Presentation

Q: What if the ML model is too complex?

N
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Underfitting & Overfitting

Overfitting - Presentation

Q: What if the ML model is too complex?

Olga Fink /Alexandre Alanhi

Overfitting model.
* Fits well on training data

* Doesn't generalise well to unknown data.

Reason: the model is too complex — it fits the noises and errors.
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Underfitting & Overfitting

Overfitting - Presentation

Q: What if the ML model is too complex?

Olga Fink /Alexandre Alanhi

Overfitting model:
* Fits well on training data
* Doesn't generalise well to unknown data.

Reason: the model is too complex — it fits the noises and errors.
Values 3

The model passes by every data point but doesn’t capture the U shape of the data set.
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Underfitting & Overfitting
Overfitting - Detection

Accurac . ..
s training-set Plot: the evolution of the accuracy on the training

set (train data) and the test set (unknown data)
over the learning process.

test-set

lterations

N
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Underfitting & Overfitting

Overfitting - Detection

Accuracy

Overfitting

raining-set

test-set

lterations

N
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Olga Fink /Alexandre Alanhi

Plot: the evolution of the accuracy on the training
set (train data) and the test set (unknown data)
over the learning process.

Overfitting: When the accuracy on the training set
iIncreases, while the accuracy on the test set
decreases.
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Underfitting & Overfitting
Overfitting - Solutions

Solutions:

Olga Fink /Alexandre Alanhi

» Simpler model — fit the data and not the noises and errors.

* More training data (— less sampling noise)

» Add a regularisation term (common solution)

Goal: Find the equilibrium between fitting the training data and keeping the model
simple enough to ensure it |

Values .
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Underfitting & Overfitting

Bias & Variance - Introduction
Another perspective on underfitting and overfitting.

Definitions;:
* Bias is a model's tendency to consistently learn the same wrong pattern.

» Variance is the tendency to learn random patterns unrelated to the
underlying relationship in the data.

» Variance measures how much a model's predictions vary when trained
on different datasets.

High bias, low variance ‘ ‘High variance, low bias

W
-
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Underfitting & Overfitting

Bias

Bias: difference between the mean prediction of the model and the mean target value.

* The more often the model gives the right prediction, the less biased it is.

Olga Fink /Alexandre Alanhi

» High-bias model — underfit the training data.

Cause: incorrect assumptions in the ML model — miss relations between the data and the
output.

» Example: assuming the data is linear when it is quadratic
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Underfitting & Overfitting

Variance

Variance: fluctuation around the mean target value in response to different training
sets.

Olga Fink /Alexandre Alanhi

* The more stable the performance of a learner, the less its variance.

 High-variance — overfit the training data.

Cause: sensitivity to small variations in the training data — model the noise in the
training data.

* A model with many degrees of freedom (e.g. a high-degree polynomial model).
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Underfitting & Overfitting

Bias & Variance - Comparison

Ideal Learner

Low Variance High Variance Overfitting

Olga Fink /Alexandre Alahi

Low Bias

Underfitting

Fig. 1: Graphical lllustration of bias-variance trade-off , Source: Scott Fortmann-Roe,, Understanding Bias-

Variance Trade-off
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L Underfitting & Overfitting

Bias & Variance - Trade-off

A good model should have low bias and low variance.

Trade-off:

e /'Model's complexity = /variance and \bias

Error
Optimum Model Complexily

® \/\Model's complexity = “variance and /'bias

— find the best compromise

&

Variance

Model Complexity
Note: To modify a model's complexity:

* Tune its hyper-parameters.

W
(e
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Underfitting & Overfitting

Regularisation - Introduction

Q: A technique to prevent overfitting (= high variance)?

Olga Fink /Alexandre Alanhi

A: Add a regularisation term to the loss function.

n
J (W)regularized =J(w) + 4 _lejz
]=

where A is the regularisation parameter (controls the strength of the regularisation).

It penalises the model complexity — incentivise to be less complex while fitting the data.



=Pr-L

B ntro to ML for engineers

=N
(o

Underfitting & Overfitting
Regularisation- L1 & L2

L2 regularisation (= ridge regression):

Olga Fink /Alexandre Alanhi

n
J (W)regularized =J(w) + 4 _lejz
]:

There are other types of regularisation:

n n
L1 regularisation (= lasso regression): A )’ sz is replaced by 4 ) [w;].
j=1 ]=1
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Regularisation - L1 vs. L2

L1 and L2 both punish high values of W.

L1 tends to set non-relevant features to zero — can be used for feature selection.

- . constrained regions by the

The regularized W : :
regularisation.

he regularized W

» Red ellipses: cost as a function of W.

W1 Wq

L1 Regularization L2 Regularization

B ntro to ML for engineers
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Underfitting & Overfitting

Regularisation - Next

Olga Fink /Alexandre Alanhi

» L1 and L2 are popular regularisation techniques

* In the following lectures, we will cover specific techniques of regularisation
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Confusion Matrix - Binary Case

For categorical binary classification, the usual metrics are based on the
confusion matrix:

» TP: True Positives (positive examples classified as positive)

= TN: True Negatives (negative examples classified as negative)
» FP: False Positives (negative examples classified as positive)
* FN: False Negatives (positive examples classified as negative)

Class

Positive Negative

Positive

B ntro to ML for engineers

Negative

Prediction

&)
=N
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Performance Metrics
Confusion Matrix - Binary Case

There are 2 additional values:

P =TP + FN: Condition positive (positive examples)

N =FP + TN: Condition negative (negative examples)

Positive Negative

Prediction

Positive

Negative

P=TP +FN

N =FP + TN

N
(o))
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Confusion Matrix - Binary Case

Example - Spam filter that categorises email as spam (true) or non-spam (false):
= 200 spams are classified as spams.

* 100 non-spams are classified as spams.

» 300 spams are classified as non-spams.

» 400 non-spams are classified as non-spams.
Class

Spam Non-Spam

Spam

Prediction

Non-Spam

B ntro to ML for engineers

P =500 N = 500

o
N
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Performance Metrics
Confusion Matrix - Multi-class case

= The confusion matrix also works for multi-class datasets.

 Example: Confusion matrix of a palmer penguins classifier (species: Chinstrap,
Gentoo, Adélie).

Olga Fink /Alexandre Alahi

Chinstrap Gentoo Adélie

Chinstrap

Gentoo

Prediction

Adélie
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Performance Metrics
Accuracy - Theory

Accuracy: Percentage of correctly classified samples.

Olga Fink /Alexandre Alanhi

TP + TN ~ TP+TN
TP+TN+FP+FN P+N

Accuracy =

Appropriate metric when:
= (Classes are not unbalanced

* The errors FP and FN have the same importance
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Accuracy - Example

Accuracy: Percentage of correctly
classified spams.

a TP+ TN
ccuracy =
P+ N -
~200+400 '% Spam
5004500 5
— 06 ch_) Non-Spam

P =500 N =500

B |ntro to ML for engineers
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Performance Metrics

Accuracy - Drawback

» Accuracy doesn't totally translate the behaviour of classifiers.

 Example: The 2 classifiers below have the same accuracy (0.6) but behave

differently:

» Left: Classify everything as Non-Spam.

» Right: Strong non-spam recognition rate, but weak spam recognition rate

Prediction

P =100

N =900

Prediction

P =100

N =900

o
o

Olga Fink /Alexandre Alahi
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Performance Metrics
Precision - Theory

Precision: Percentage of samples classified as positives that are truly
positives.

TP
I'P + FP

Precision =

o
~

Olga Fink /Alexandre Alahi
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Performance Metrics
Precision - Example

Precision: Percentage of samples classified as
spams that are truly spams.

TP

TP+ FP

200
2004100

= 0.667

Precision =

Spam

Prediction

Non-Spam

P =500

N =500

o
00)
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Performance Metrics
Recall - Theory

Recall: Percentage of positive samples that are correctly classified as positives.

T'P T'P

Recall = —
AT TP YEN T P

o
(@)

Olga Fink /Alexandre Alahi
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Performance Metrics
Recall - Example

Recall: Percentage of spams that are

correctly classified as spams.

Recall 7
ecall = —
P
- 200 _
2004300 = Spam
O
= 0.4 'E_g
& Non-Spam

P =500

N =500

~
o
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Performance Metrics
Precision & Recall - Drawback

* Precision and recall don't totally translate the behaviour of classifiers.

 Example: The 2 classifiers below have the same precision (0.667) and recall
(0.4) but behave differently:

» Very different negative recognition rates (strong on left, nil on right).

= Accuracy would clearly show this.

Prediction

P =500

N =500

Prediction

P =500

N =100

\l
H
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Performance Metrics
F1-Score - Theory

F1 score: Single number that combines precision and recall

Olga Fink /Alexandre Alahi

Precision-Recall

F1=2-

Precision+Recall

Precision and recall can be weighted differently, If one is more important than
the other.
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Performance Metrics
F1-Score - Example

F1 score: Single number that combines

precision and recall

Precision-Recall

F1=2-

Precision+Recall

0.667-0.4
0.667+0.4

= 0.5

Spam

Prediction

Non-Spam

P =500

N =500

~
w
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Performance Metrics
ROC Curve

= Many classifiers output a prediction score for every sample.

* Then, it uses a threshold to categorise the samples. If the score’'s sample is
higher than the threshold, It Is categorise as positive (negative If it is lower).

Misclassified

N

hd N i e
Prediction score Threshold = 0.5
u u 0.9 0.3 Spam —Spam
Email samples Score samples Classified samples

~
D
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Performance Metrics

ROC Curve :
<
* Increasing the threshold, decrease the true positive rate but also decrease LE
the false positive rate. O
 Example: spam = positive.
Pocall — TP 1
—Spanm—Spam ¢t T p T35
_ 01 _ P
u u 0.6 0.6
Prediction score
“ “ 0.9 0.3 P
' ' Recall = — = =
Spam Spam p
Email samples Score samples - FP 1
Spam —Spam ' "¢ TN T2

Classified samples
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Performance Metrics
ROC Curve

* ROC: plot that illustrates the ability of a
binary classifier system as its threshold is
varied.

* The area under the ROC curve (AUC) can
act as a metric.

e The maximum AUC is 1.

» Random predictions give AUC = 0.5

ROC_CURVE

~
(@)

xandre Alahi
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http://playground.tensorflow.org/
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B |ntro to ML for engineers

What Is an input representation?
What Is a feature?

Handling different types of features
Missing values

Feature expansion

Examples of representations

~
00)
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What Is an Iinput representation in ML?

A representation i1s a mathematical form (e.g., a vector)

“Solving a problem simply means representing it so as to make the solution transparent.”

It describes an observation Iin the real-world (e.g., an image, waveforms,
signals, ...)

It Is used for subsequent steps (e.g., a classifier) to produce the outcome of
Interest (e.g., recognizing objects)

It Is often more compact than the original observation (lower dimensionality)
It Is potentially more robust to nuisances

With a good representation, subsequent steps should be easier

- H. Simon, Sciences of the Artificial -

~
O
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=PrL  What is an input representation in ML?

“Solving a problem simply means representing it so as to make the solution transparent.”
- H. Simon, Sciences of the Artificial -

B |ntro to ML for engineers
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What I1s a Feature?

A feature vector Is a representation,
l.e., amathematical form that describes an observation in the real-world...

00)
N
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Feature engineering

Feature engineering means transforming raw data into a feature vector that represents
the underlying data well

= e —

Designing clever features Is a key part of the machine learning pipeline

For simple models, most of the “heavy lifting” is done there

B |ntro to ML for engineers
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Features
Feature engineering

[Raw Data ] [ Feature Vector ]

[

Olga Fink /Alexandre Alahi

6.0,
0:4 1.0
house_info : { 0'0’ ~
num_rooms: 6 Feature Engineering > 5 f |
rum_ bedrooms: 3 s rocess of creating
N ; . "Shorehird Way" 00, features from raw data
street_name. ~>horebird vvay 90321 is feature engineering.
num_basement_rooms: -1 290 ’ Y,
1.01
} 2
0.0,
}
~ wevy
Raw data doesn't come ]
to us as feature vectors.
- Y

Image credit: Google Machine Learning Crash Course



https://developers.google.com/machine-learning/crash-course/representation/feature-engineering
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Features
Types of features

Different types of features:

= Numerical / continuous

* e.g., height, temperature, price, ...

= Ordinal
* e.g., like”, "somewhat like
= Categorical

* e.g., color, species, ...

)« )«

‘neutral”, "somewhat dislike”, “dislike”

Feature type Order Scale
Numerical Yes Yes
""""""""""""""""""""""""""""" ordina |  Yes | No
""""""""""""""""""""""""" Categoricak | N |  No

o0)
ol
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Features
Preprocessing

Olga Fink /Alexandre Alahi

Preprocessing: the process of transforming raw feature vectors into a representation
that Is more suitable for ML algorithms

Techniques differ depending on type of feature:

* Numerical, ordinal and categorical features need to be handled differently
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Numerical features
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Numerical features
Data normalization

Data normalization / feature scaling: Normalize features (bring them all to the same scale)

Olga Fink /Alexandre Alahi

Crucial step In preprocessing:
» Many classifiers (such as KNN) rely on distance metrics
= Gradient descent will converge faster

= Coefficients are penalized appropriately (in the case where regularization is applied)
iz % _ TN cost

A
>0, > 0

A. Géron “Hands-on Machine Learning with Scikit-Learn
and TensorFlow”, 2017

B |ntro to ML for engineers



https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

=PrL  Numerical features

Data normalization - Example

Example:
KNN with Palmer Penguins dataset

Features: body mass & bill length

D
oo

IS
(@)]

Q: Which feature matters the most for the distance metric?
A

* |f body mass in g and bill length in m

m)
AN
S

Bill length (m
o

I
(@)

— body mass matters more
» |If body mass in kg and bill length in mm

— bill length matters more

B |ntro to ML for engineers

With normalization, the units of the features stop playing an
Important role in the model accuracy

Training set (60 examples)

(92
(@)
1

(OF)
()
1

w
(®)]
]

w
N
]

- adelie

gentoo

8

10 12
Body mass (kq)

14

16

18

20

(o)
o
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Bill length (mm)
D
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o
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Numerical features
Data normalization - Example

Training set (60 examples)

38 -

36 -

34

adelie
gentoo

10 12
Body mass (kg)

14

16

18

20

Normalization

ﬁ

Bill length (normalized)

Training set, normalized (60 examples)

adelie
gentoo

®C

-1 0 1
Body mass (normalized)

O
=
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Numerical features
Data normalization - Methods

Min-max scaling:
Scale each feature to the range [0, 1]

For each feature:

xX—min(x)

x e
norm max(x)—min(x)

Z-Score Normalization / Standardization:
Set mean of each feature (M) to O, standard deviation (o) to 1

For each feature:

B |ntro to ML for engineers

leOT'm

Original Data

Scaled data

A

Original Data

I
0.0 0.5

Mormalized data

1.0

I I I I
0.0 2.5 5.0 7.5

I I I I
—4 —2 0 2

O
N
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Data normalization - Outliers

Features may have outliers or follow some heavy-
tailed distribution

" e.g., urban area population:

 most urban areas have a few thousands
Inhabitants

* a handful of urban areas have tens of millions of
inhabitants (New York, Tokyo, ...)

B |ntro to ML for engineers
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Data normalization - Outliers

If the dataset has outliers, then:

= With min-max scaling:

» typical values are scaled to a very small interval

= With Z-score standardization:

* mean & standard deviation Is not meaningful for
heavy-tailed data

» outliers will still have very large values

B |ntro to ML for engineers

=> Qutliers affect the quality of the scaling

0.8

0.7

0.6

05

04

0.3

0.2

0.1

00

-10 0 10 20 30 40 50

outliers

—

roomsPerPerson

Image credit: Google Machine Learning Crash Course
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https://developers.google.com/machine-learning/crash-course/representation/feature-engineering
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Numerical features
Handling outliers

To handle outliers:

Logarithmic scaling: take the log of every value
« /\ make sure all values are positive
- eg., x =[1,10,5,600]

— log(x) = [0,2.3,1.6,6.4]

Value clipping: clip all values above / below an
arbitrary threshold

= e.g., for clip value of [-10, 10]:
.« x =[0,—3,—1294,5,10320]
— clip(x) = [0,—3,—10,5,10]

Same feature, capped to a max of 4.0
08

0.7

0.6

05

outliers are
now 4.0

04

03

0.2

roomsPerPerson

Image credit: Google Machine Learning Crash Course
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Numerical features
Binning

Binning / discretization: partition continuous features into discrete values

Olga Fink /Alexandre Alahi

" e.g., age: instead of using each person’s age as a number, we may want to use
age ranges instead: 0-9, 10-19, 20-35, ...

Common types of binning: I I
= Uniform: all bins have identical widths

= Quantile: all bins have the same number of points

» Clustered: a clustering algorithm (seen later
In this course) Is used to separate values

B |ntro to ML for engineers
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Next week

= Continue on the role of representation

» Deep learning
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Features
Resources

» Google Machine Learning Crash Course:

https://developers.google.com/machine-learning/crash-
course/representation/feature-engineering

 Scikit-learn preprocessing documentation:
https://scikit-learn.org/stable/modules/preprocessing.html

« Kaggle feature engineering tutorial:
https://www.kaggle.com/learn/feature-engineering

(o)
(@)
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https://developers.google.com/machine-learning/crash-course/representation/feature-engineering
https://scikit-learn.org/stable/modules/preprocessing.html
https://www.kaggle.com/learn/feature-engineering
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Glossary

= KNN: K-Nearest Neighbors

= ML: Machine Learning

= RMSE: Root Mean Square Error

= MSE: Mean Square Error

= Toy problem/example: a problem without scientific interest but
useful for illustrating a concept

100
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Appendix
Notation

X : A set (ex: dataset)

X : Features of X

Y : Labels of X

x(i) : Element l of the set X (ex: datapoint)
A : A scalar

d : A vector

A : A matrix or a tensor

a; : Element L of vector A , With indexing starting at 1
A; j : Element (i, ) of matrix A

A; . : Row L of matrix A

)

A. ; : Column [ of matrix A
A; ik : Element (i, J, k) of a 3D tensor A
A..; : 2D slice of a 3D tensor A
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=PrL - Appendix

Cost Function - Disambiguation

IN this class:

] : cost function
=> average of loss over a single iteration

In ML literature:
» |oss function L
= cost function |

= error function E

are sometimes used interchangeably, and
sometimes used like they are In this class
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