

ML Basics - Part 2

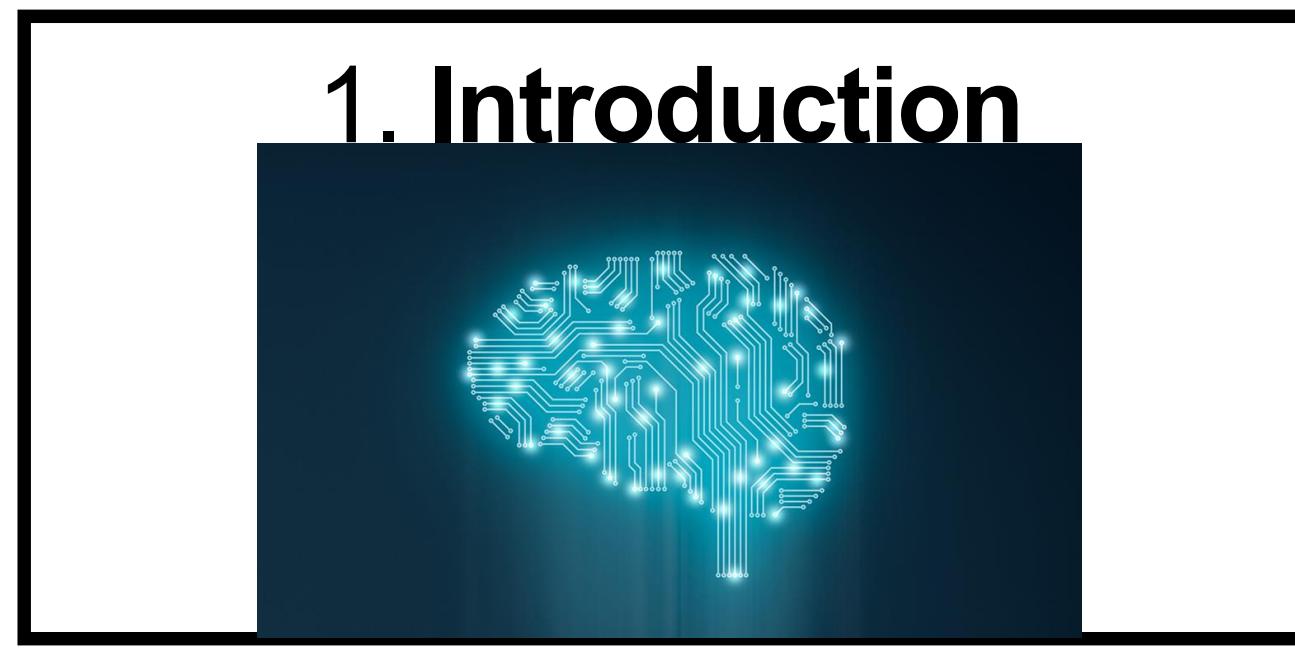
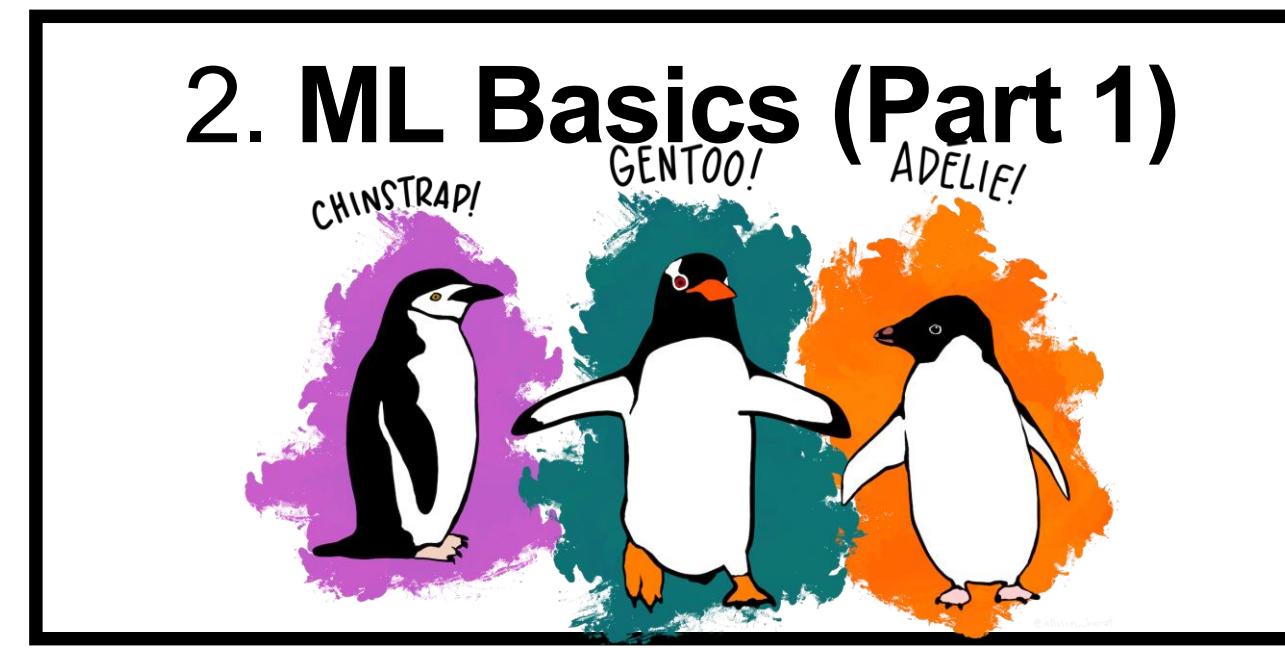
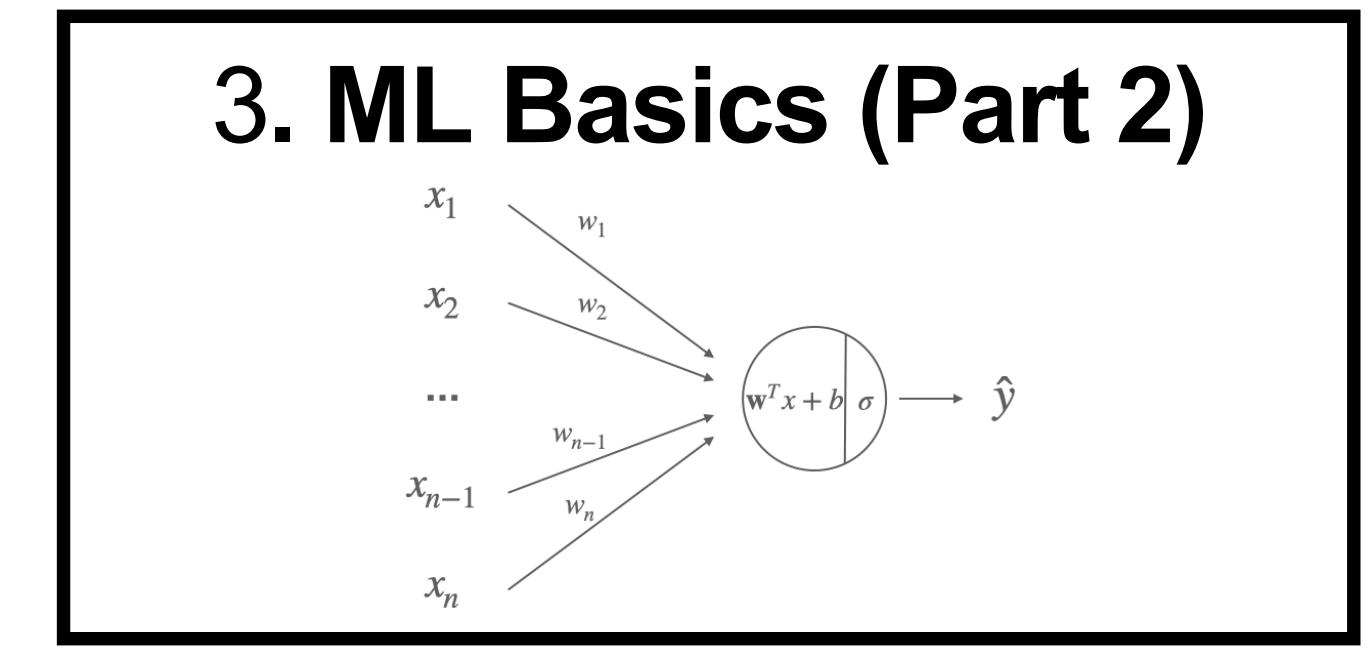
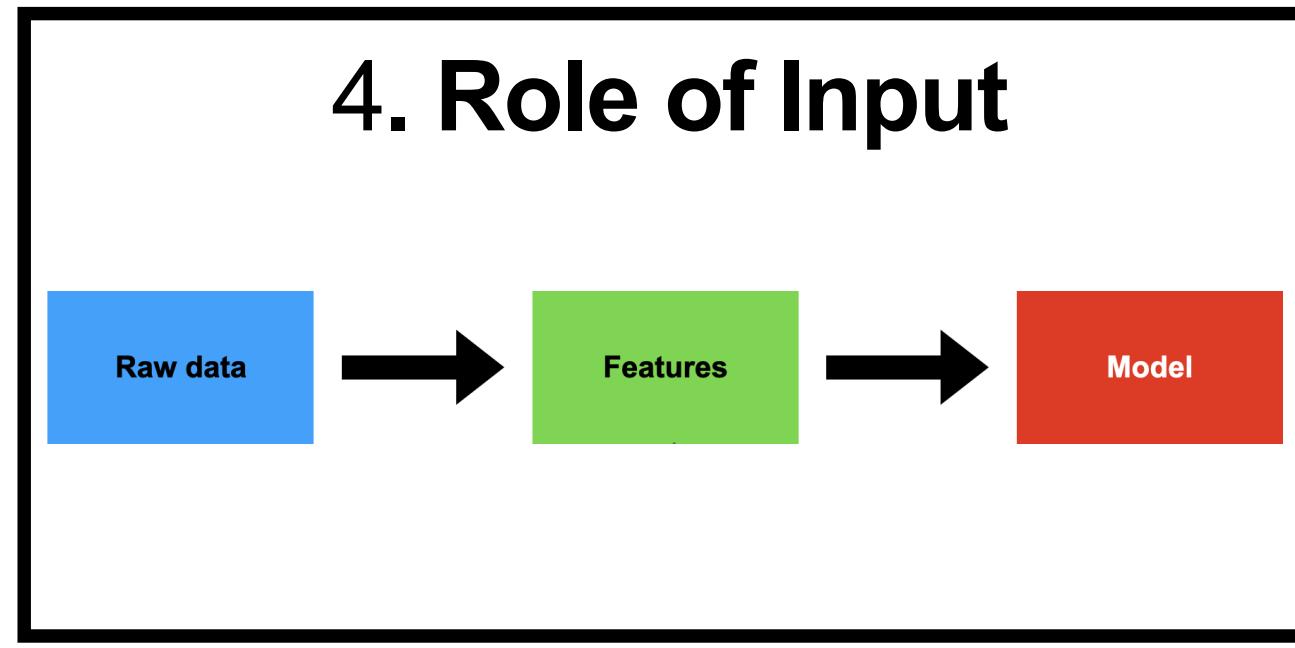
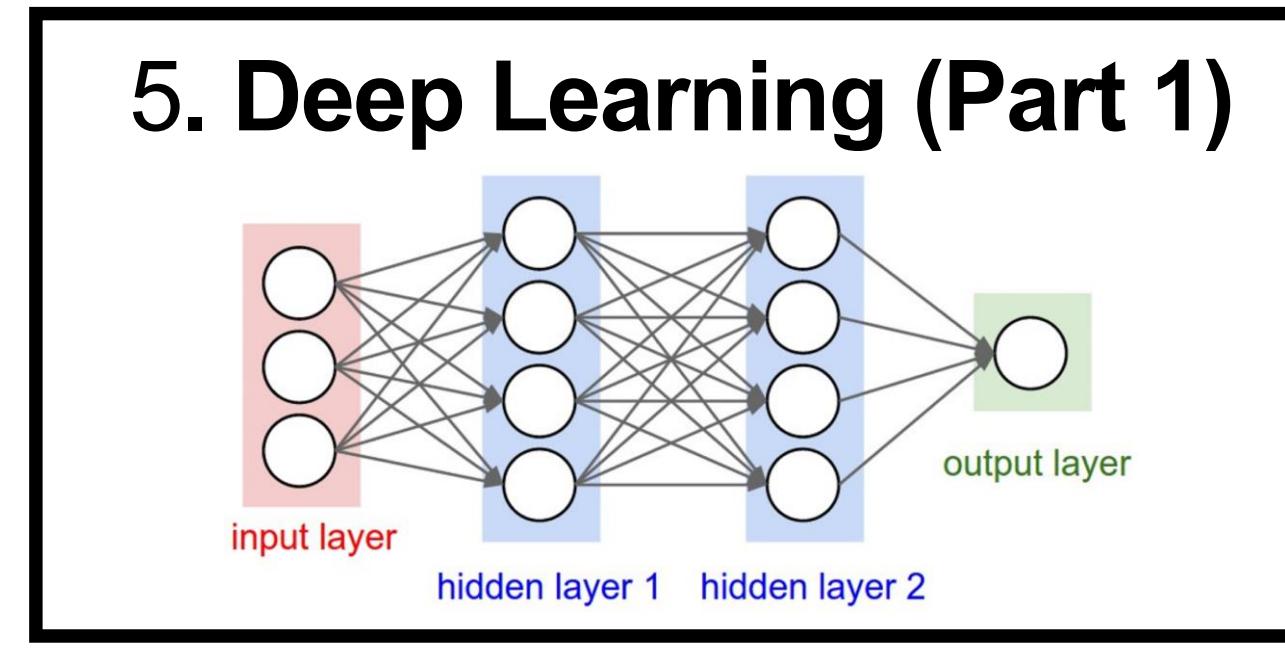
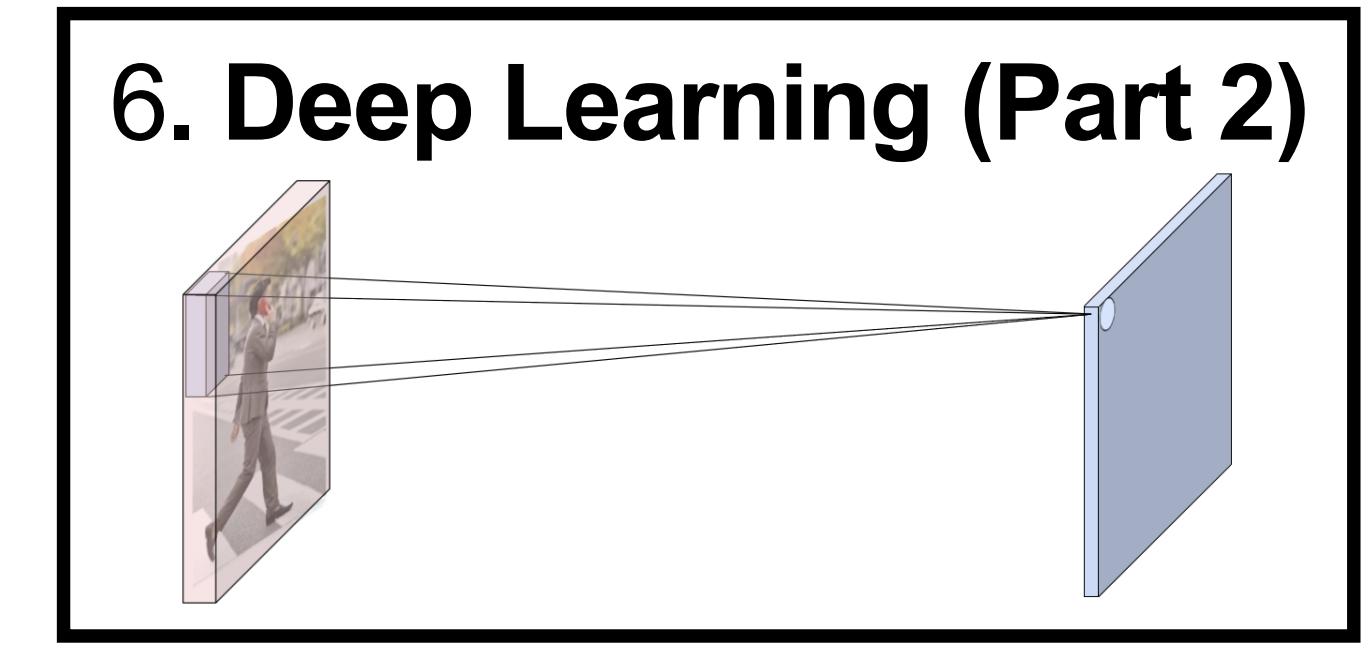
Last week

- Define ML ingredients
- Translate a problem to ML
 - Supervised vs. Unsupervised
 - Regression vs. Classification
 - Parametric vs. Non-parametric
- Linear regression
- Non-parametric KNN
- Logistic regression

Today

- Quick recap of classification with Logistic Regression
- Underfitting & Overfitting
- Performance Metrics
- Role of representation

Today



Underfitting & Overfitting

Underfitting & Overfitting

Introduction

Goal of supervised ML models: generalise well on new data (based on the patterns learned from known data).

Two situations where it fails:

- Underfitting
- Overfitting

Underfitting & Overfitting

Underfitting

Underfitting: the model doesn't fit well on the training data.

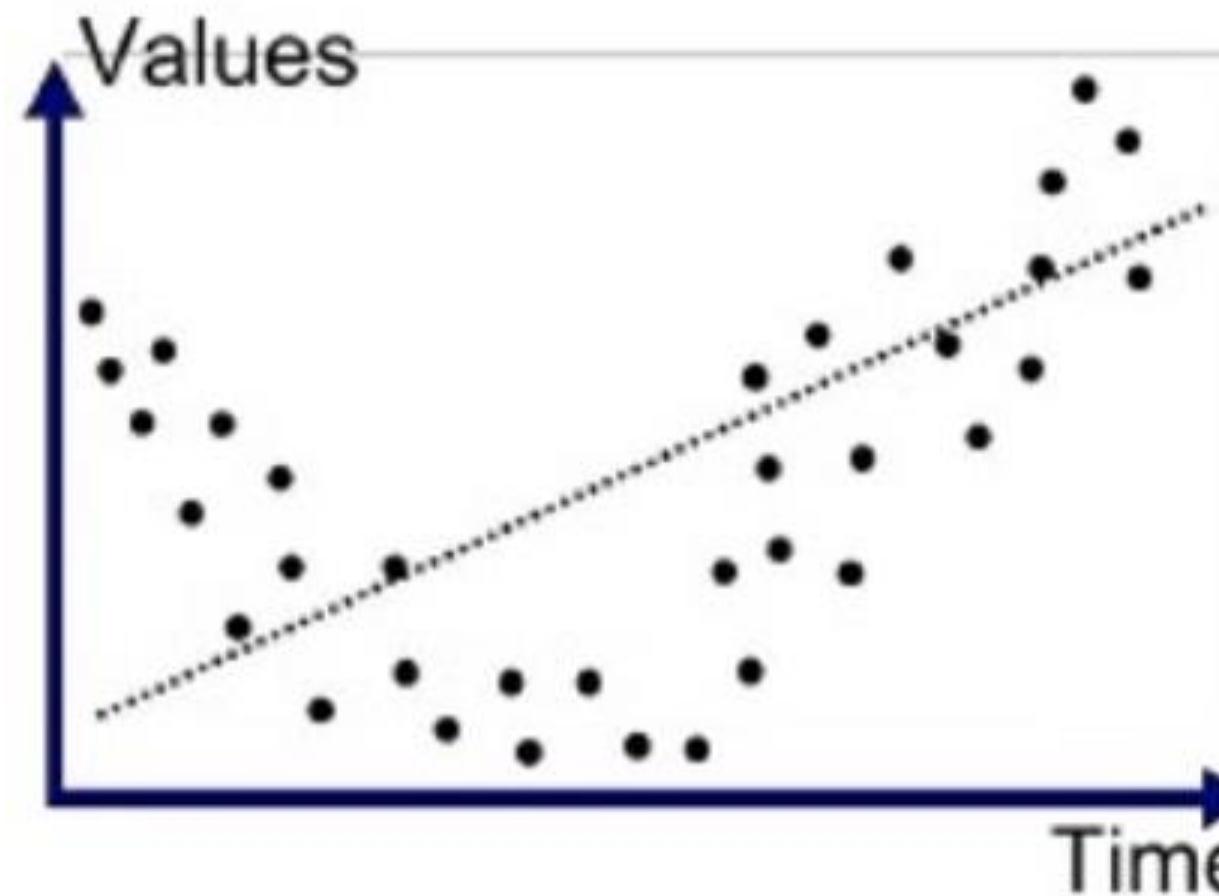
Reason: model too simple → can't capture the underlying patterns within the data.

Underfitting & Overfitting

Underfitting

Underfitting: the model doesn't fit well on the training data.

Reason: model too simple → can't capture the underlying patterns within the data.



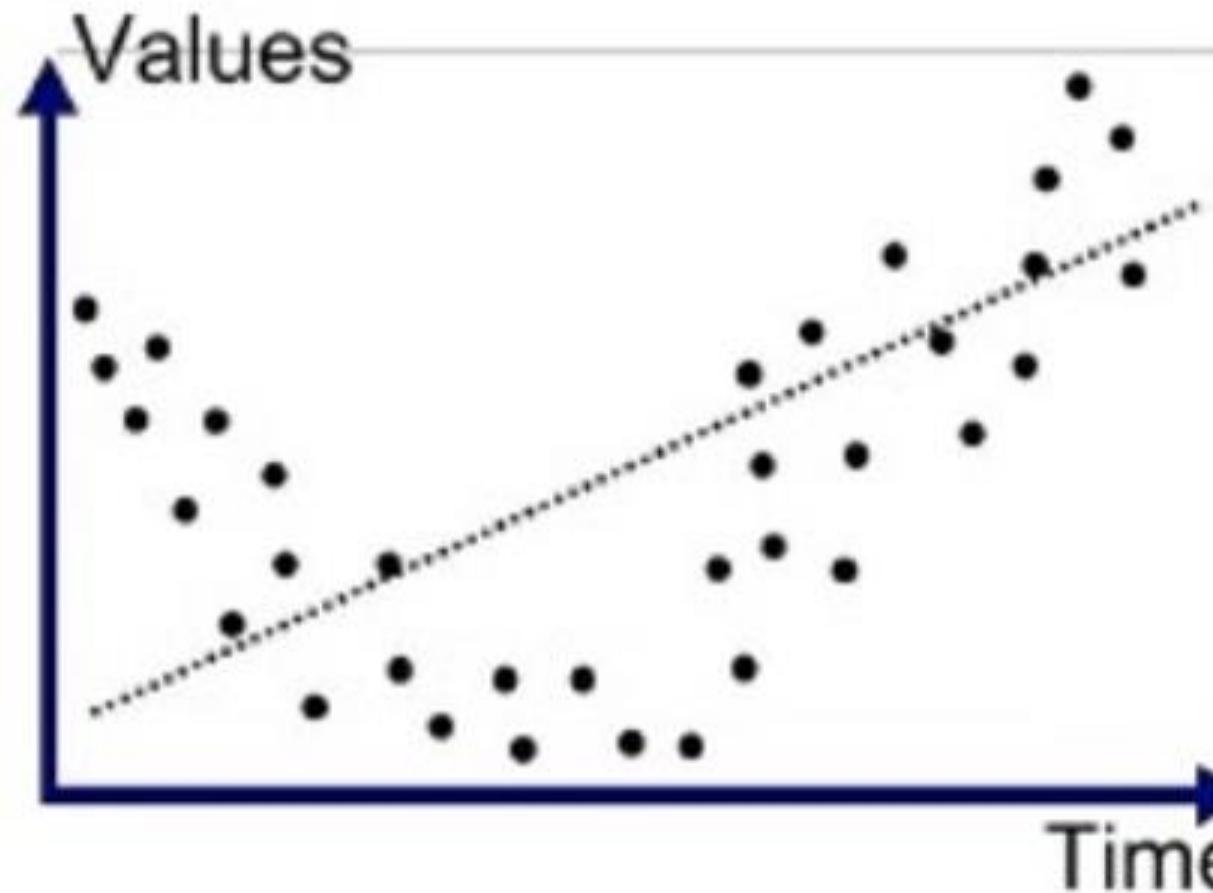
The model (the line) doesn't capture the U shape of the data set.

Underfitting & Overfitting

Underfitting

Underfitting: the model doesn't fit well on the training data.

Reason: model too simple → can't capture the underlying patterns within the data.



The model (the line) doesn't capture the U shape of the data set.

→ **Solution:** choose a more complex algorithm/model to better fit the data.

Underfitting & Overfitting

Overfitting - Presentation

Q: What if the ML model is too complex?

Underfitting & Overfitting

Overfitting - Presentation

Q: What if the ML model is too complex?

Overfitting model:

- Fits well on training data
- Doesn't generalise well to unknown data.

Reason: the model is too complex → it fits the noises and errors.

Underfitting & Overfitting

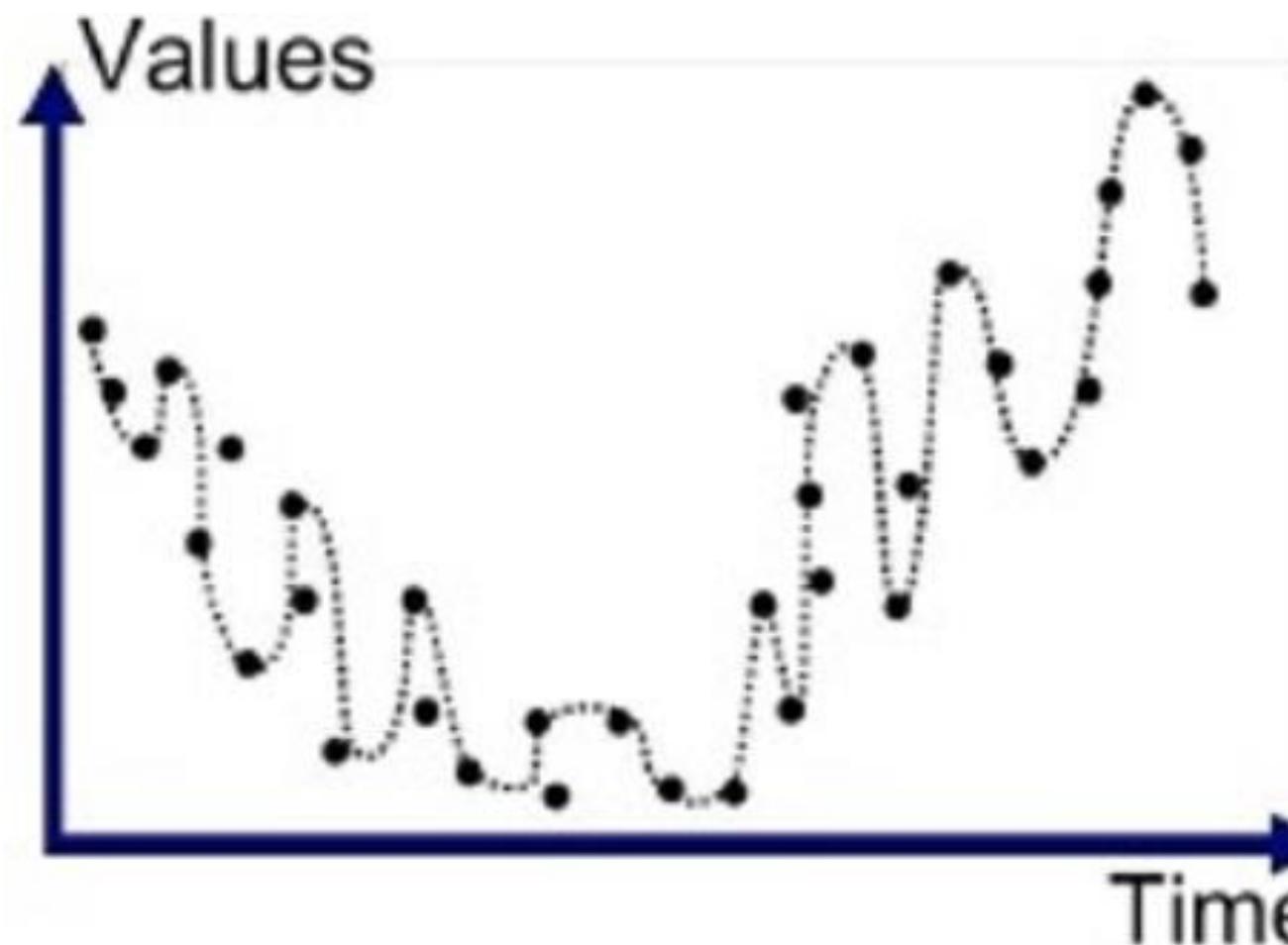
Overfitting - Presentation

Q: What if the ML model is too complex?

Overfitting model:

- Fits well on training data
- Doesn't generalise well to unknown data.

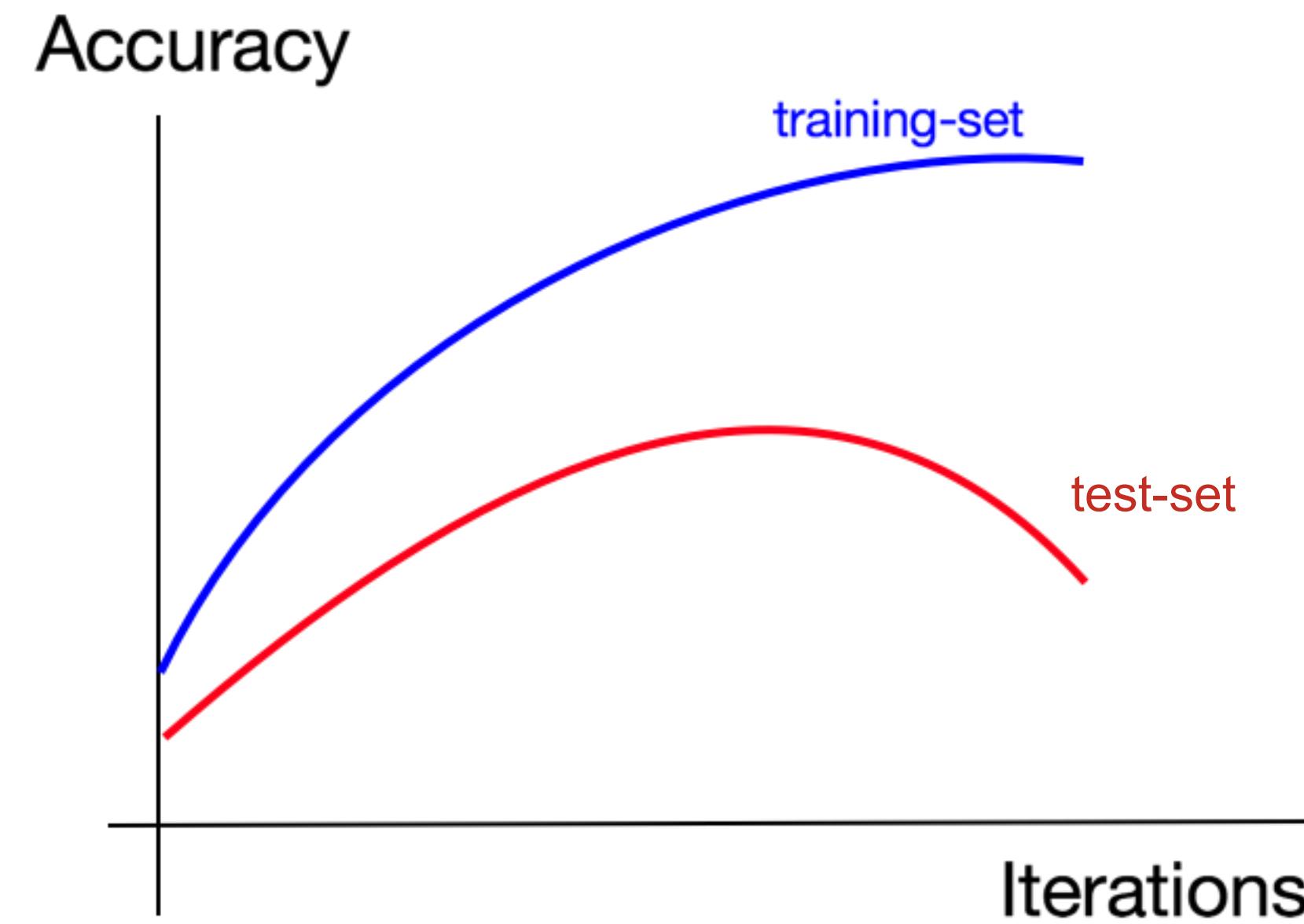
Reason: the model is too complex → it fits the noises and errors.



The model passes by every data point but doesn't capture the U shape of the data set.

Underfitting & Overfitting

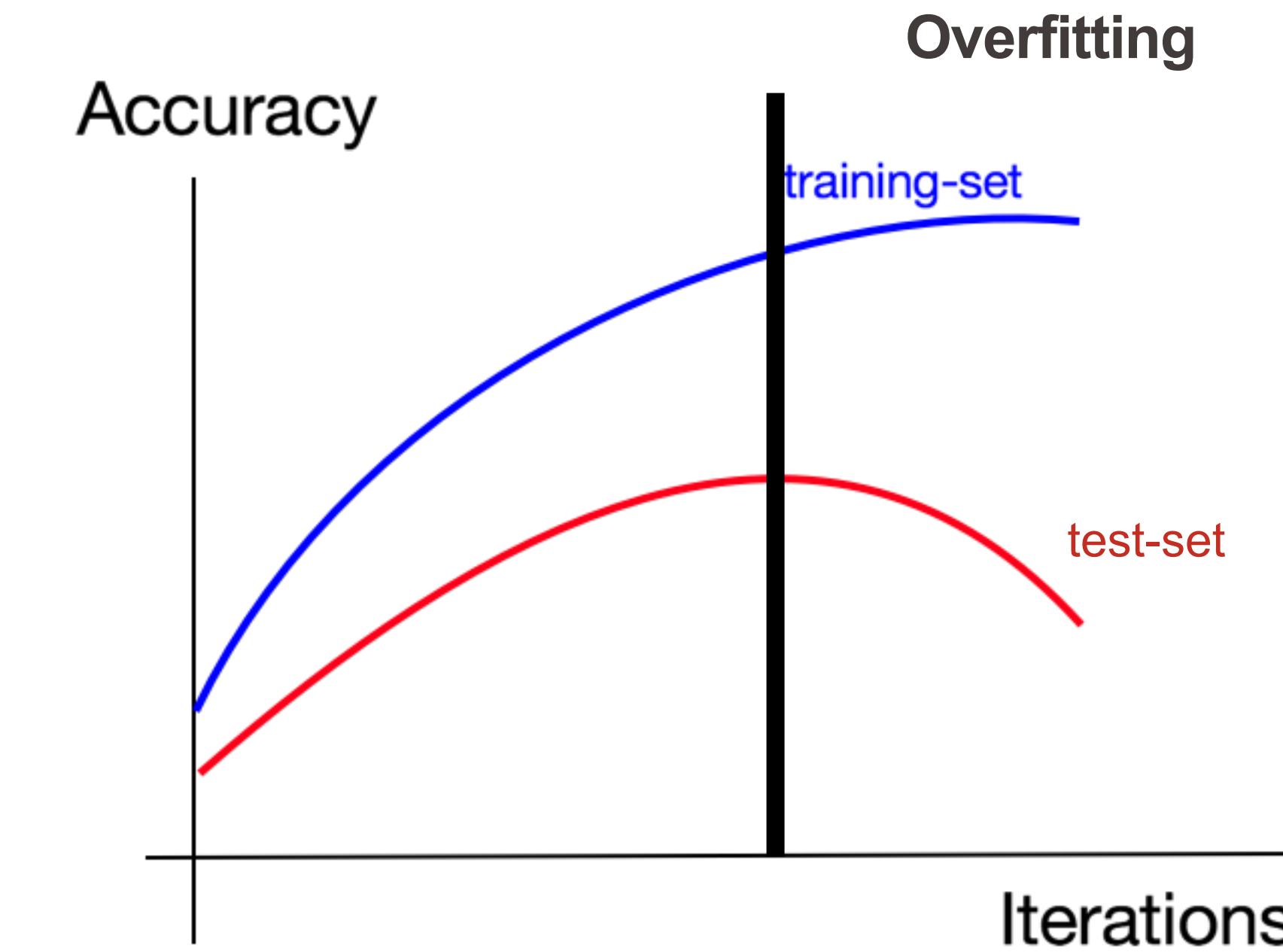
Overfitting - Detection



Plot: the evolution of the accuracy on the training set (train data) and the test set (unknown data) over the learning process.

Underfitting & Overfitting

Overfitting - Detection



Plot: the evolution of the accuracy on the training set (train data) and the test set (unknown data) over the learning process.

Overfitting: When the accuracy on the training set increases, while the accuracy on the test set decreases.

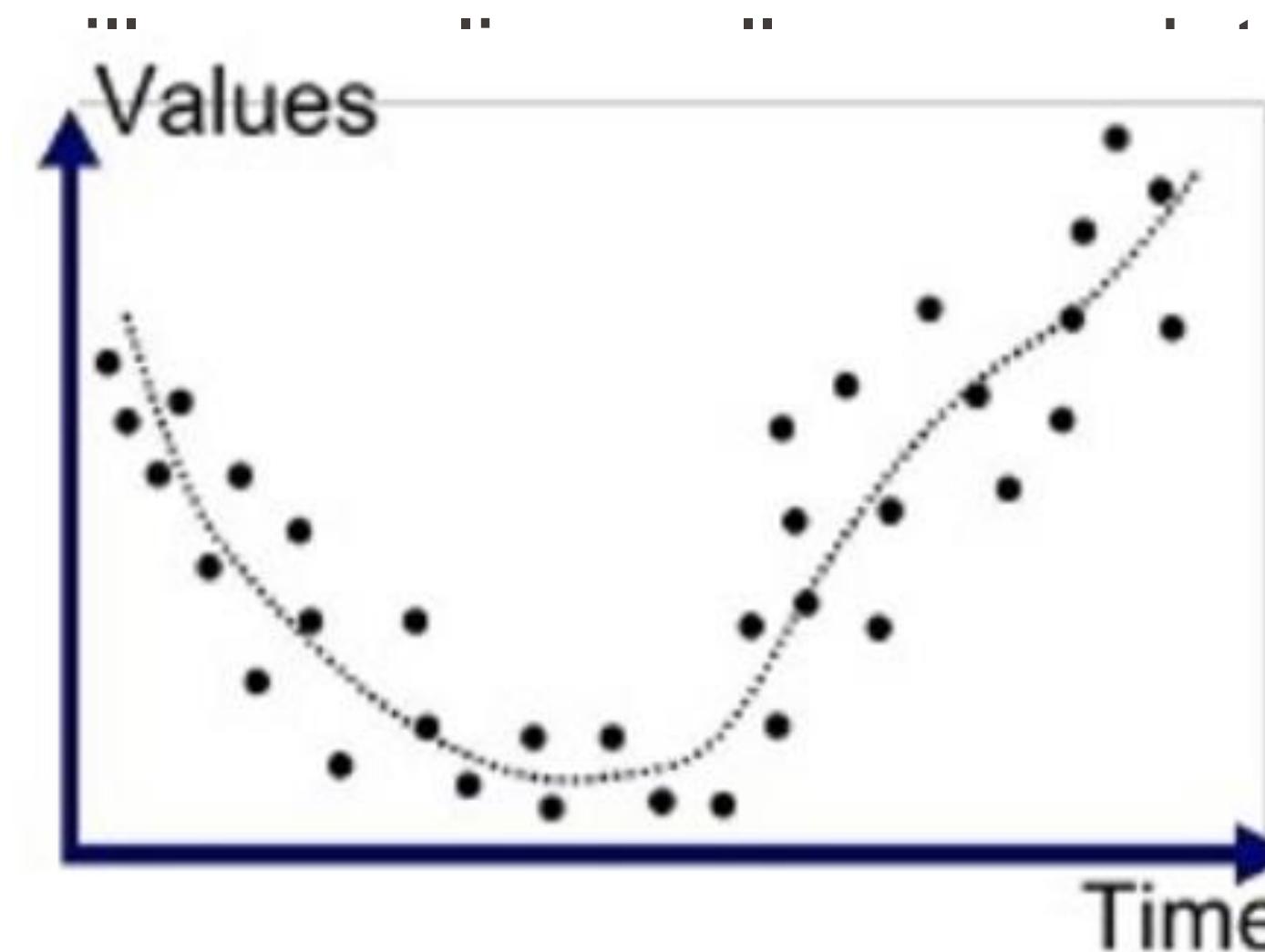
Underfitting & Overfitting

Overfitting - Solutions

Solutions:

- Simpler model → fit the data and not the noises and errors.
- More training data (\rightarrow less sampling noise)
- Add a regularisation term (common solution)

Goal: Find the equilibrium between fitting the training data and keeping the model simple enough to ensure it



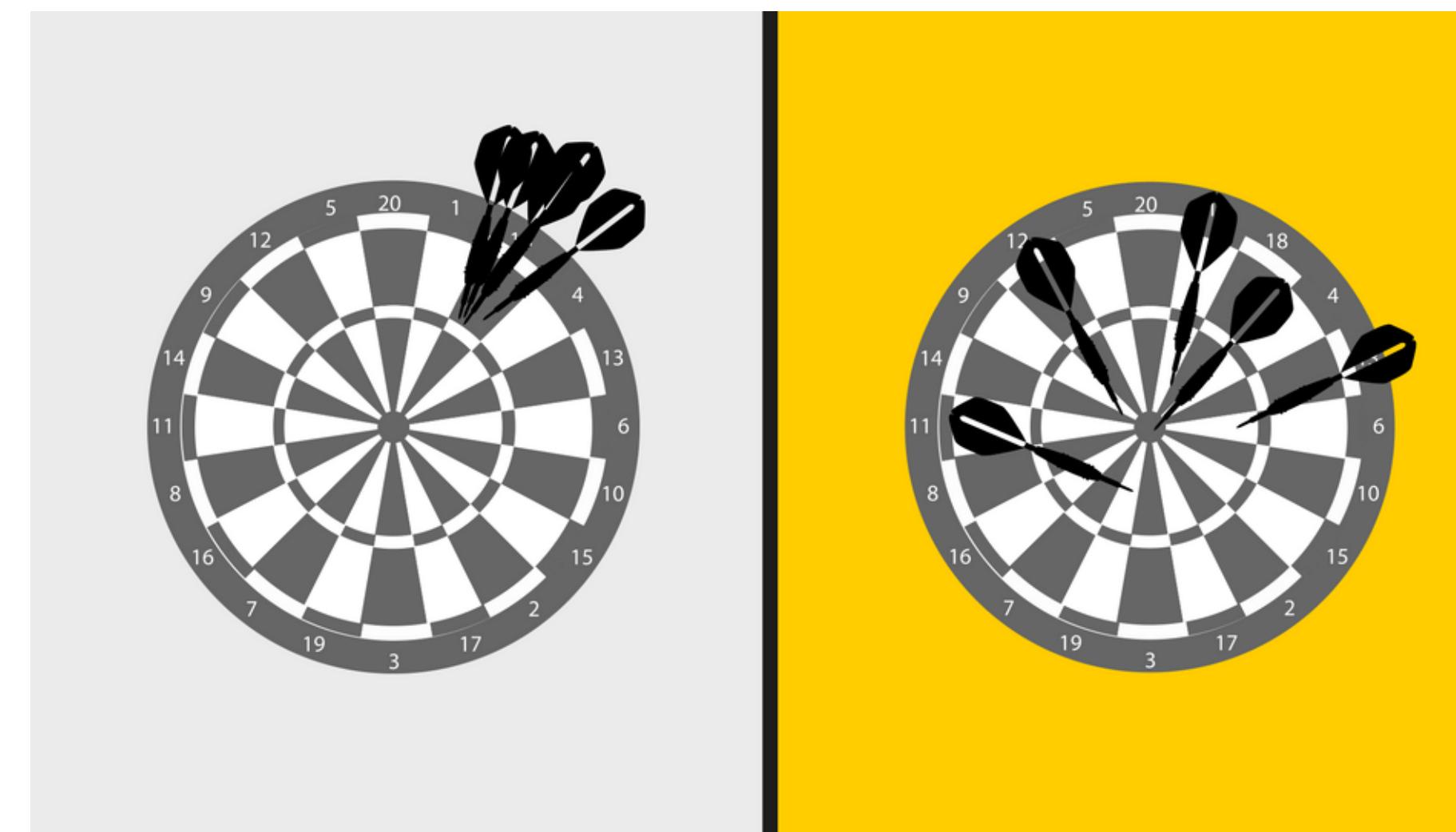
Underfitting & Overfitting

Bias & Variance - Introduction

Another perspective on underfitting and overfitting.

Definitions:

- **Bias** is a model's tendency to consistently learn the same wrong pattern.
- **Variance** is the tendency to learn random patterns unrelated to the underlying relationship in the data.
- **Variance** measures how much a model's predictions vary when trained on different datasets.



High bias, low variance

High variance, low bias

Underfitting & Overfitting

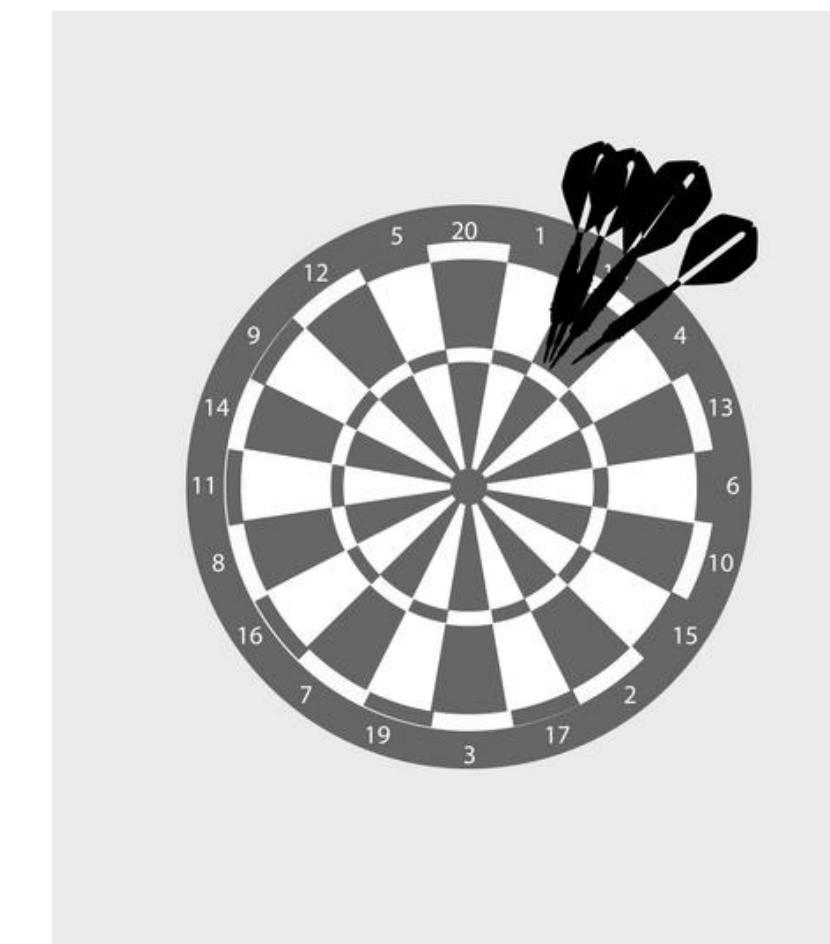
Bias

Bias: difference between the mean prediction of the model and the mean target value.

- The more often the model gives the right prediction, the less biased it is.
- High-bias model → underfit the training data.

Cause: incorrect assumptions in the ML model → miss relations between the data and the output.

- Example: assuming the data is linear when it is quadratic



Underfitting & Overfitting

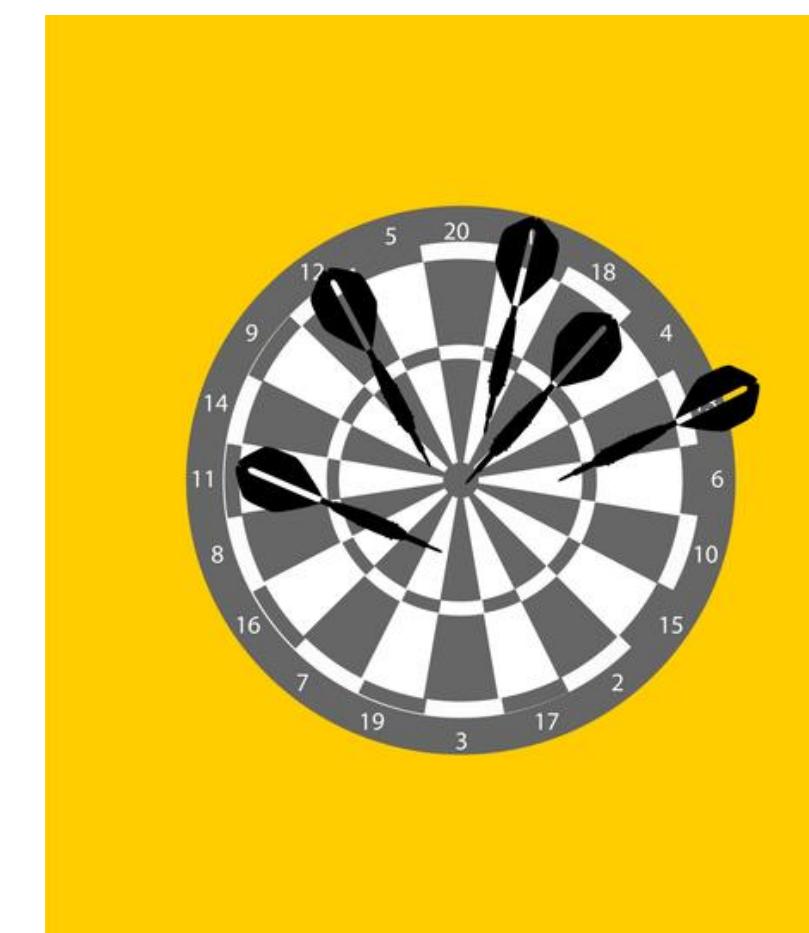
Variance

Variance: fluctuation around the mean target value in response to different training sets.

- The more stable the performance of a learner, the less its variance.
- High-variance → overfit the training data.

Cause: sensitivity to small variations in the training data → model the noise in the training data.

- A model with many degrees of freedom (e.g. a high-degree polynomial model).



Underfitting & Overfitting

Bias & Variance - Comparison

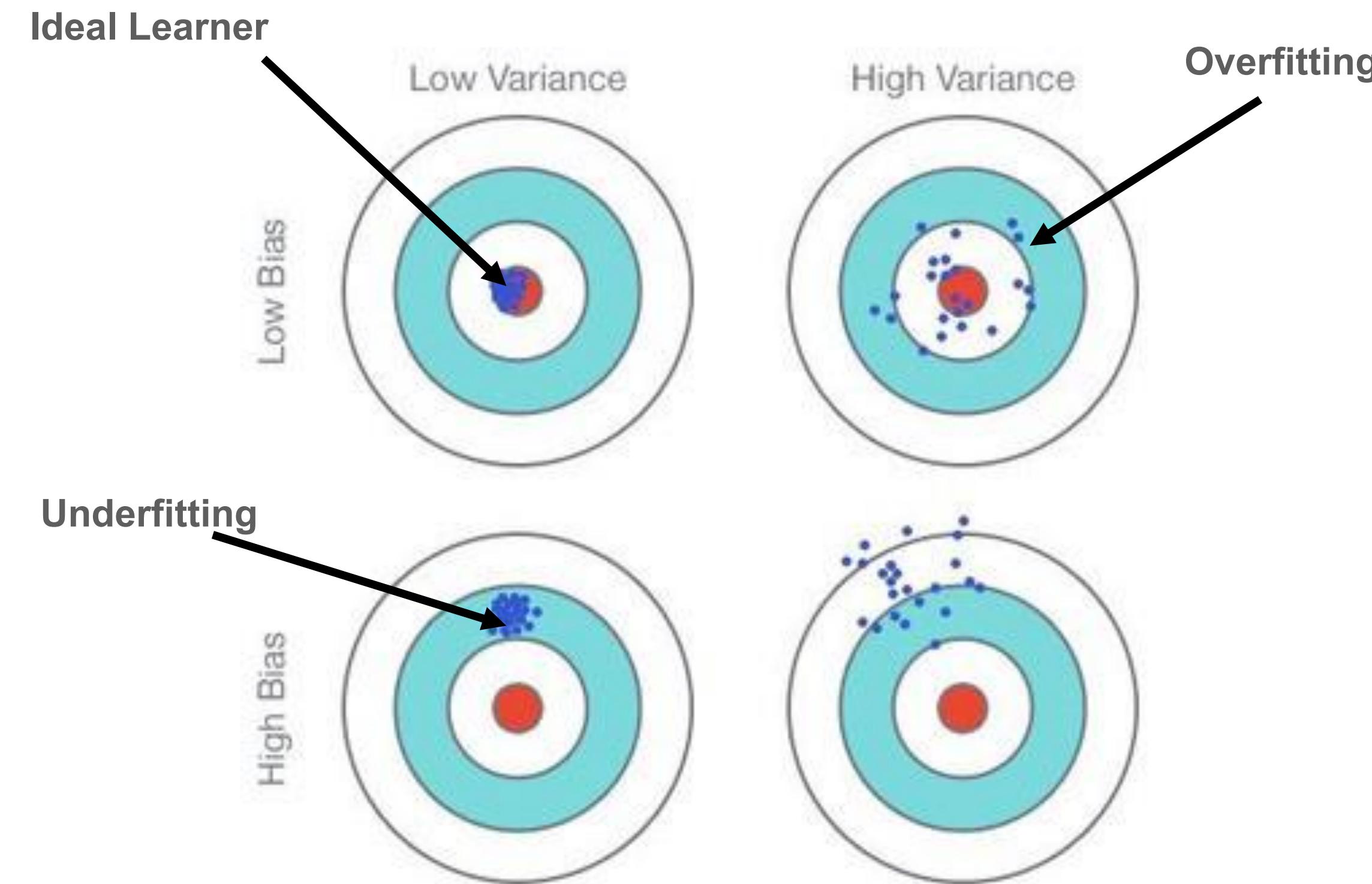


Fig. 1: Graphical Illustration of bias-variance trade-off , Source: Scott Fortmann-Roe., Understanding Bias-Variance Trade-off

Underfitting & Overfitting

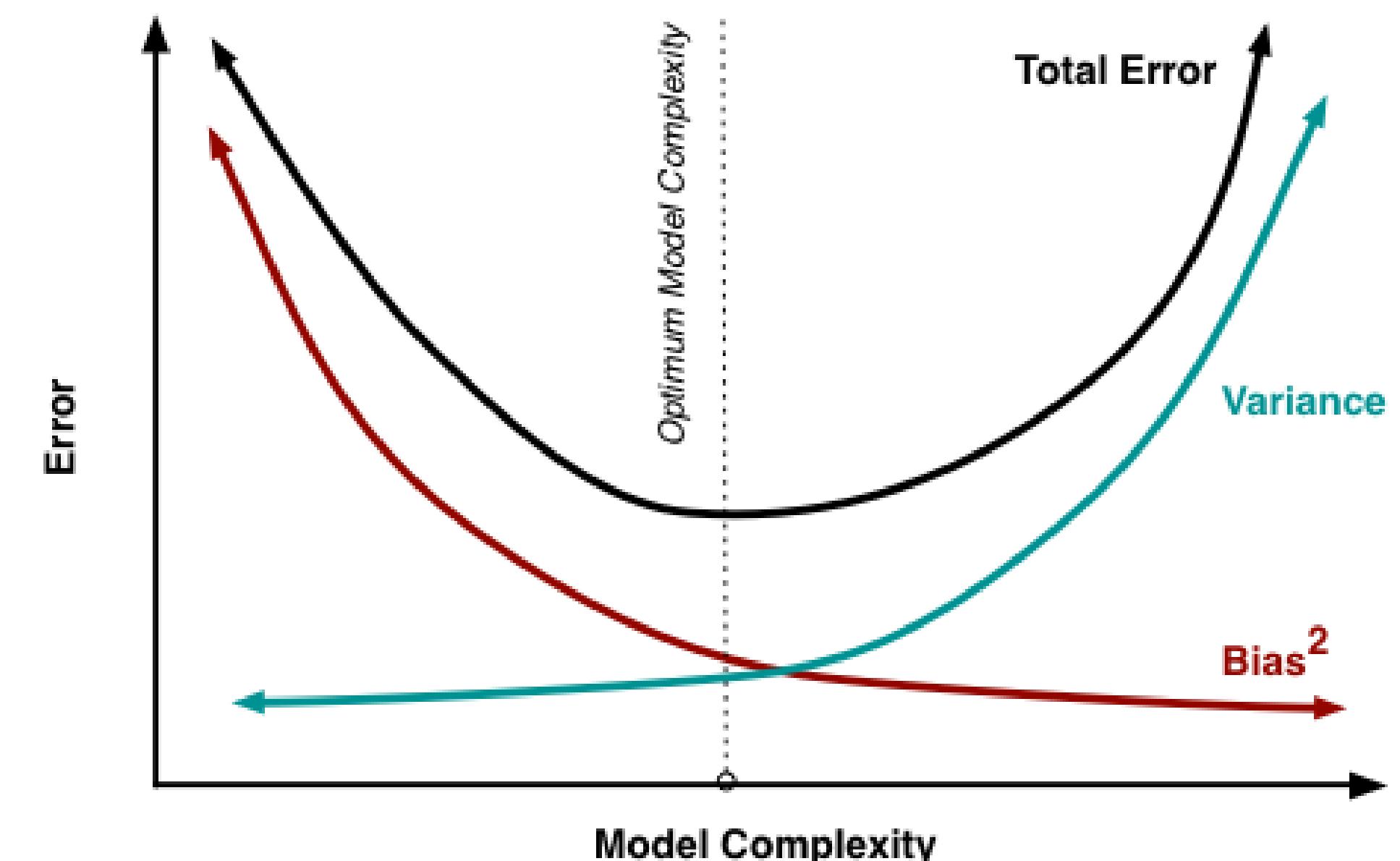
Bias & Variance - Trade-off

A good model should have low bias and low variance.

Trade-off:

- \nearrow Model's complexity \Rightarrow \nearrow variance and \searrow bias
- \searrow Model's complexity \Rightarrow \searrow variance and \nearrow bias

→ find the best compromise



Note: To modify a model's complexity:

- Tune its hyper-parameters.

Underfitting & Overfitting

Regularisation - Introduction

Q: A technique to prevent overfitting (\equiv high variance)?

A: Add a **regularisation term** to the loss function.

$$J(\mathbf{w})_{regularized} = J(\mathbf{w}) + \lambda \sum_{j=1}^n w_j^2$$

where λ is the regularisation parameter (controls the strength of the regularisation).

It penalises the model complexity \rightarrow incentivise to be less complex while fitting the data.

Underfitting & Overfitting

Regularisation - L1 & L2

L2 regularisation (\equiv ridge regression):

$$J(\mathbf{w})_{regularized} = J(\mathbf{w}) + \lambda \sum_{j=1}^n w_j^2$$

There are other types of regularisation:

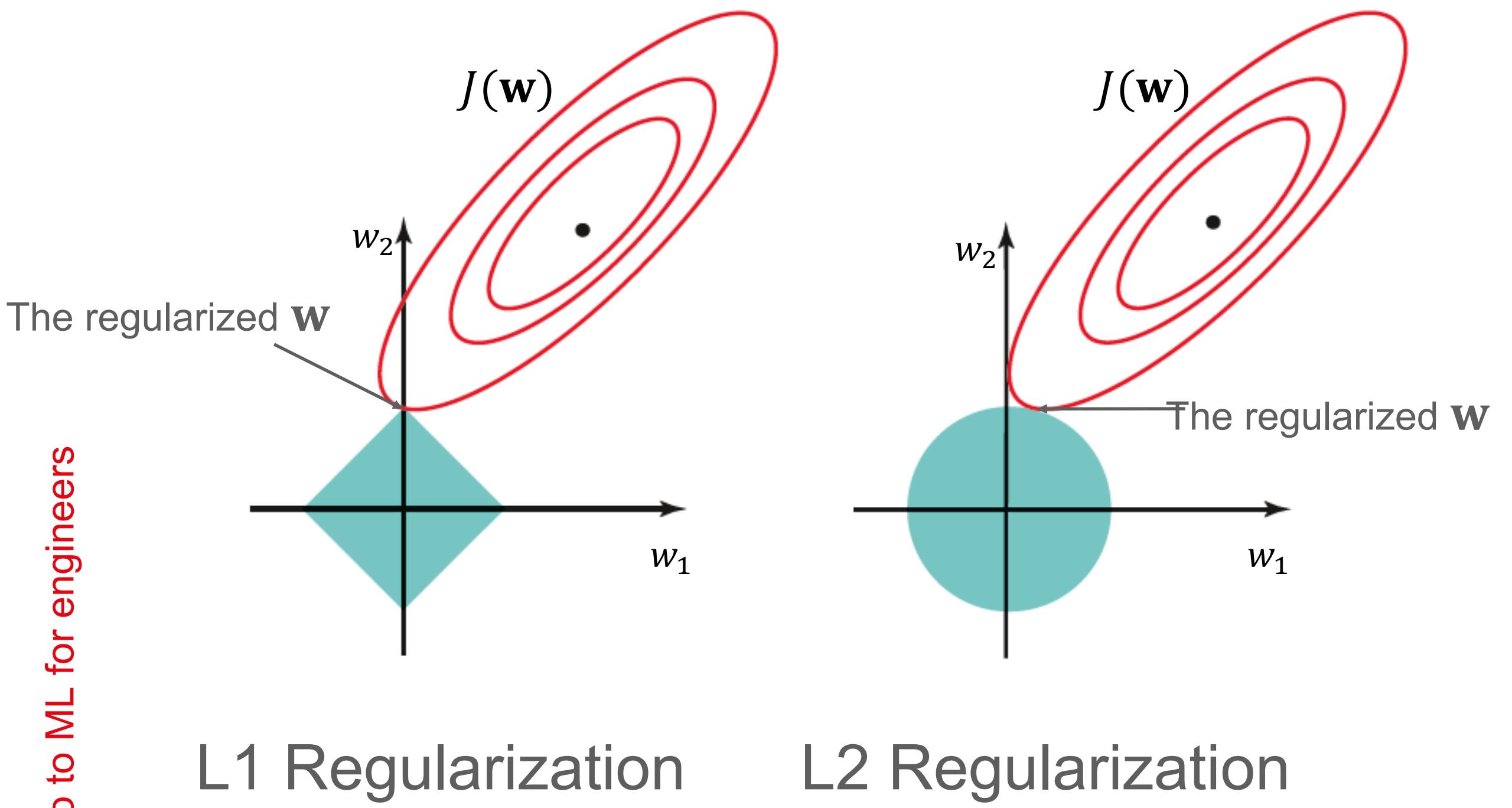
L1 regularisation (\equiv lasso regression): $\lambda \sum_{j=1}^n w_j^2$ is replaced by $\lambda \sum_{j=1}^n |w_j|$.

Underfitting & Overfitting

Regularisation - L1 vs. L2

L1 and L2 both punish high values of \mathbf{w} .

L1 tends to set non-relevant features to zero \rightarrow can be used for feature selection.



- **Blue areas:** constrained regions by the regularisation.
- **Red ellipses:** cost as a function of \mathbf{w} .

Underfitting & Overfitting

Regularisation - Next

- **L1** and **L2** are popular regularisation techniques
- In the following lectures, we will cover specific techniques of regularisation

Performance Metrics

Performance Metrics

Confusion Matrix - Binary Case

For categorical binary classification, the usual metrics are based on the confusion matrix:

- **TP**: True Positives (positive examples classified as positive)
- **TN**: True Negatives (negative examples classified as negative)
- **FP**: False Positives (negative examples classified as positive)
- **FN**: False Negatives (positive examples classified as negative)

		Class	
		Positive	Negative
Prediction	Positive	TP	FP
	Negative	FN	TN

Performance Metrics

Confusion Matrix - Binary Case

There are 2 additional values:

- $P = TP + FN$: Condition positive (positive examples)
- $N = FP + TN$: Condition negative (negative examples)

		Class	
		Positive	Negative
Prediction	Positive	TP	FP
	Negative	FN	TN
		$P = TP + FN$	$N = FP + TN$

Performance Metrics

Confusion Matrix - Binary Case

Example - Spam filter that categorises email as spam (true) or non-spam (false):

- 200 spams are classified as spams.
- 100 non-spams are classified as spams.
- 300 spams are classified as non-spams.
- 400 non-spams are classified as non-spams.

		Class	
		Spam	Non-Spam
Prediction	Spam	200	100
	Non-Spam	300	400
		P = 500	N = 500

Performance Metrics

Confusion Matrix - Multi-class case

- The confusion matrix also works for multi-class datasets.
- Example: Confusion matrix of a palmer penguins classifier (species: Chinstrap, Gentoo, Adélie).

		Class		
		Chinstrap	Gentoo	Adélie
Prediction	Chinstrap	12	1	1
	Gentoo	0	16	0
	Adélie	0	1	16

Performance Metrics

Accuracy - Theory

Accuracy: Percentage of correctly classified samples.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{P + N}$$

Appropriate metric when:

- Classes are not unbalanced
- The errors FP and FN have the same importance

Performance Metrics

Accuracy - Example

Accuracy: Percentage of correctly classified spams.

$$\begin{aligned} \text{Accuracy} &= \frac{TP + TN}{P + N} \\ &= \frac{200+400}{500+500} \\ &= 0.6 \end{aligned}$$

		Class	
		Spam	Non-Spam
Prediction	Spam	200	100
	Non-Spam	300	400
		$P = 500$	$N = 500$

Performance Metrics

Accuracy - Drawback

- Accuracy doesn't totally translate the behaviour of classifiers.
- **Example:** The 2 classifiers below have the same accuracy (0.6) but behave differently:
 - Left: Classify everything as Non-Spam.
 - Right: Strong non-spam recognition rate, but weak spam recognition rate

		Class	
		Spam	Non-Spam
Prediction	Spam	0	0
	Non-Spam	100	900
		P = 100	N = 900

		Class	
		Spam	Non-Spam
Prediction	Spam	50	50
	Non-Spam	50	850
		P = 100	N = 900

Performance Metrics

Precision - Theory

Precision: Percentage of samples classified as positives that are truly positives.

$$Precision = \frac{TP}{TP + FP}$$

Performance Metrics

Precision - Example

Precision: Percentage of samples classified as spams that are truly spams.

$$\begin{aligned} \text{Precision} &= \frac{TP}{TP + FP} \\ &= \frac{200}{200+100} \\ &= 0.667 \end{aligned}$$

		Class	
		Spam	Non-Spam
Prediction	Spam	200	100
	Non-Spam	300	400
		$P = 500$	$N = 500$

Performance Metrics

Recall - Theory

Recall: Percentage of positive samples that are correctly classified as positives.

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{P}$$

Performance Metrics

Recall - Example

Recall: Percentage of spams that are correctly classified as spams.

$$\begin{aligned} \text{Recall} &= \frac{TP}{P} \\ &= \frac{200}{200+300} \\ &= 0.4 \end{aligned}$$

		Class	
		Spam	Non-Spam
Prediction	Spam	200	100
	Non-Spam	300	400
		$P = 500$	$N = 500$

Performance Metrics

Precision & Recall - Drawback

- Precision and recall don't totally translate the behaviour of classifiers.
- **Example:** The 2 classifiers below have the same precision (0.667) and recall (0.4) but behave differently:
 - Very different negative recognition rates (strong on left, nil on right).
- Accuracy would clearly show this.

■ Intro to ML for engineers

		Class	
		Spam	Non-Spam
Prediction	Spam	200	100
	Non-Spam	300	400
		$P = 500$	$N = 500$

		Class	
		Spam	Non-Spam
Prediction	Spam	400	300
	Non-Spam	100	0
		$P = 500$	$N = 100$

Performance Metrics

F1-Score - Theory

F1 score: Single number that combines precision and recall

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Precision and recall can be weighted differently, if one is more important than the other.

Performance Metrics

F1-Score - Example

F1 score: Single number that combines precision and recall

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

$$= 2 \cdot \frac{0.667 \cdot 0.4}{0.667 + 0.4}$$

$$= 0.5$$

		Class	
		Spam	Non-Spam
Prediction	Spam	200	100
	Non-Spam	300	400
		$P = 500$	$N = 500$

Performance Metrics

ROC Curve

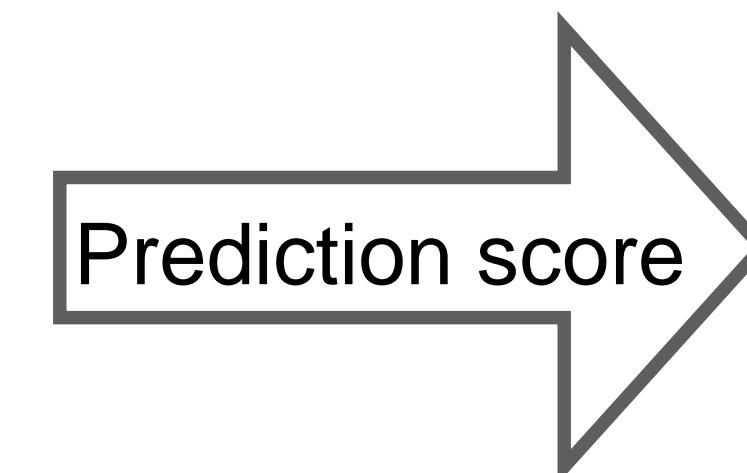
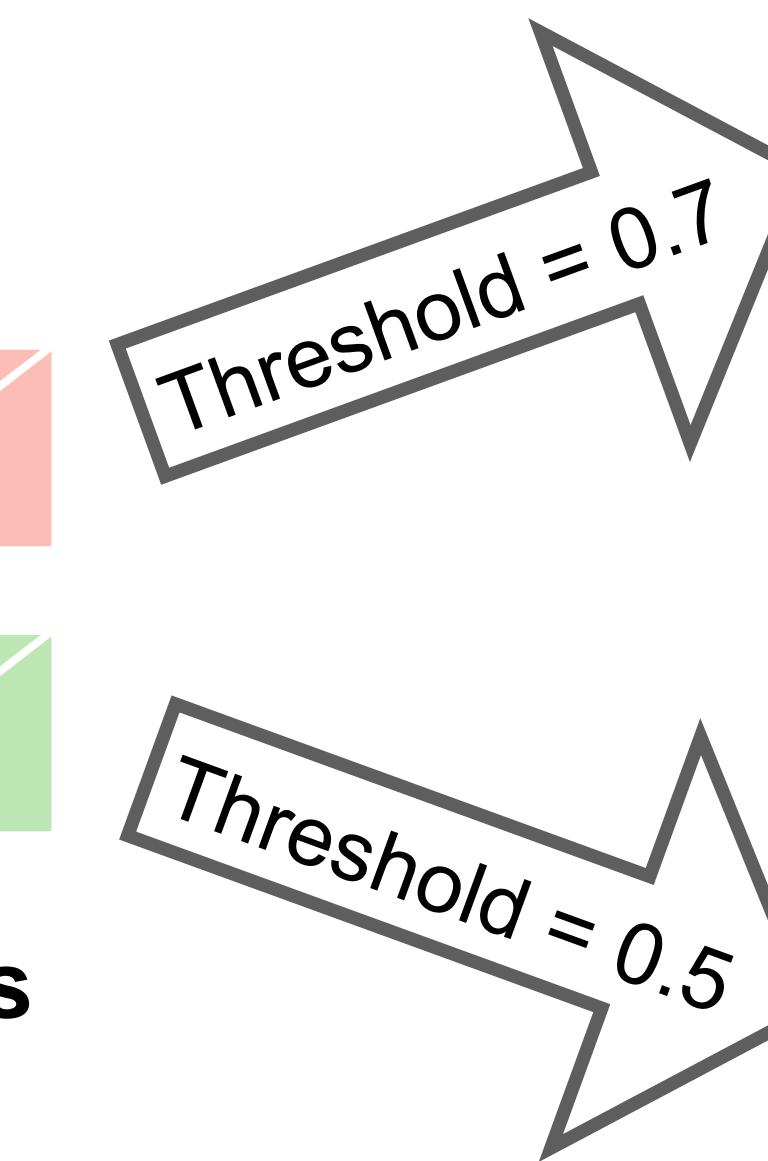
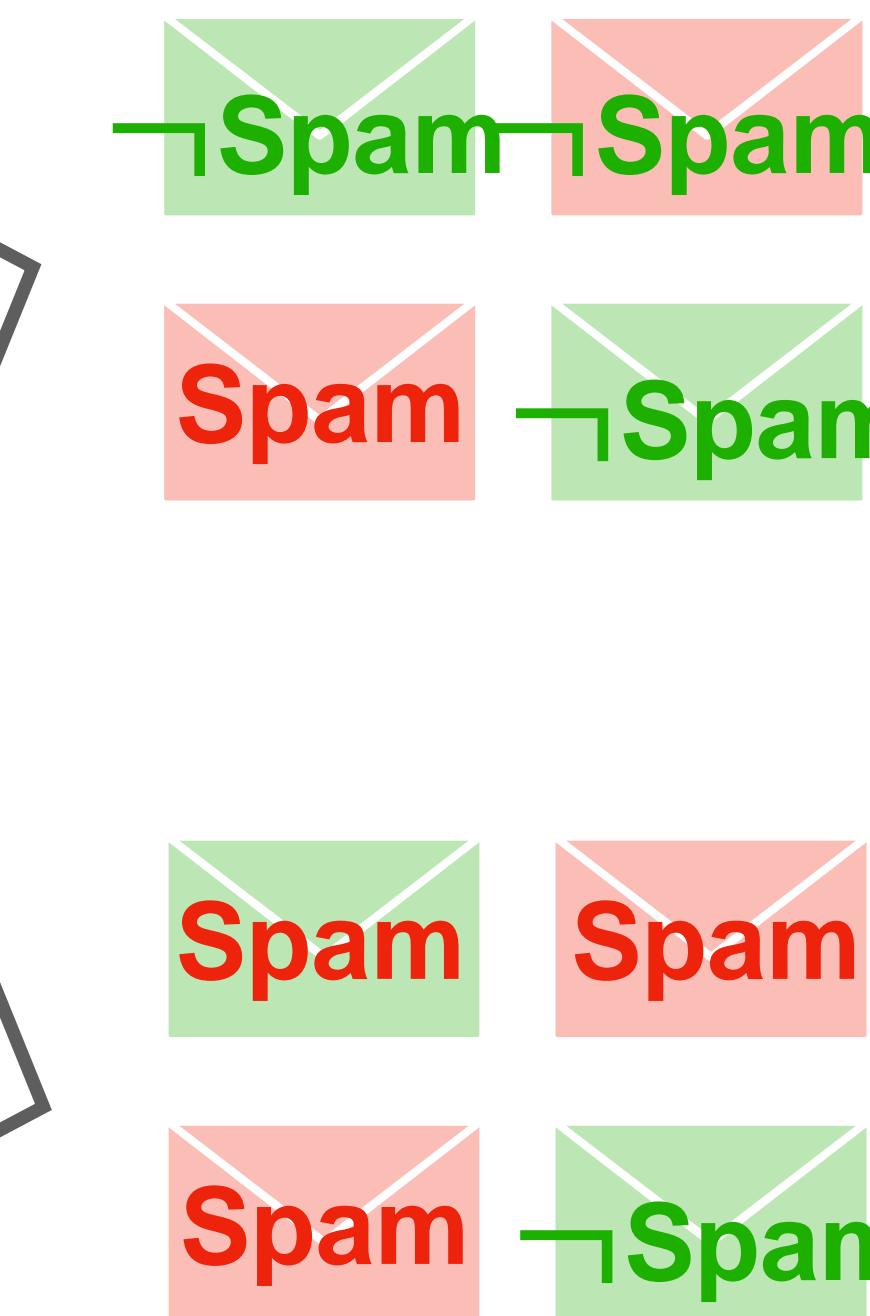
- Many classifiers output a prediction score for every sample.
- Then, it uses a threshold to categorise the samples. If the score's sample is higher than the threshold, it is categorise as positive (negative if it is lower).

Performance Metrics

ROC Curve

- Increasing the threshold, decrease the true positive rate but also decrease the false positive rate.
- Example: spam = positive.

■ Intro to ML for engineers



Classified samples

$$Recall = \frac{TP}{P} = \frac{1}{2}$$

$$FPRate = \frac{FP}{N} = 0$$

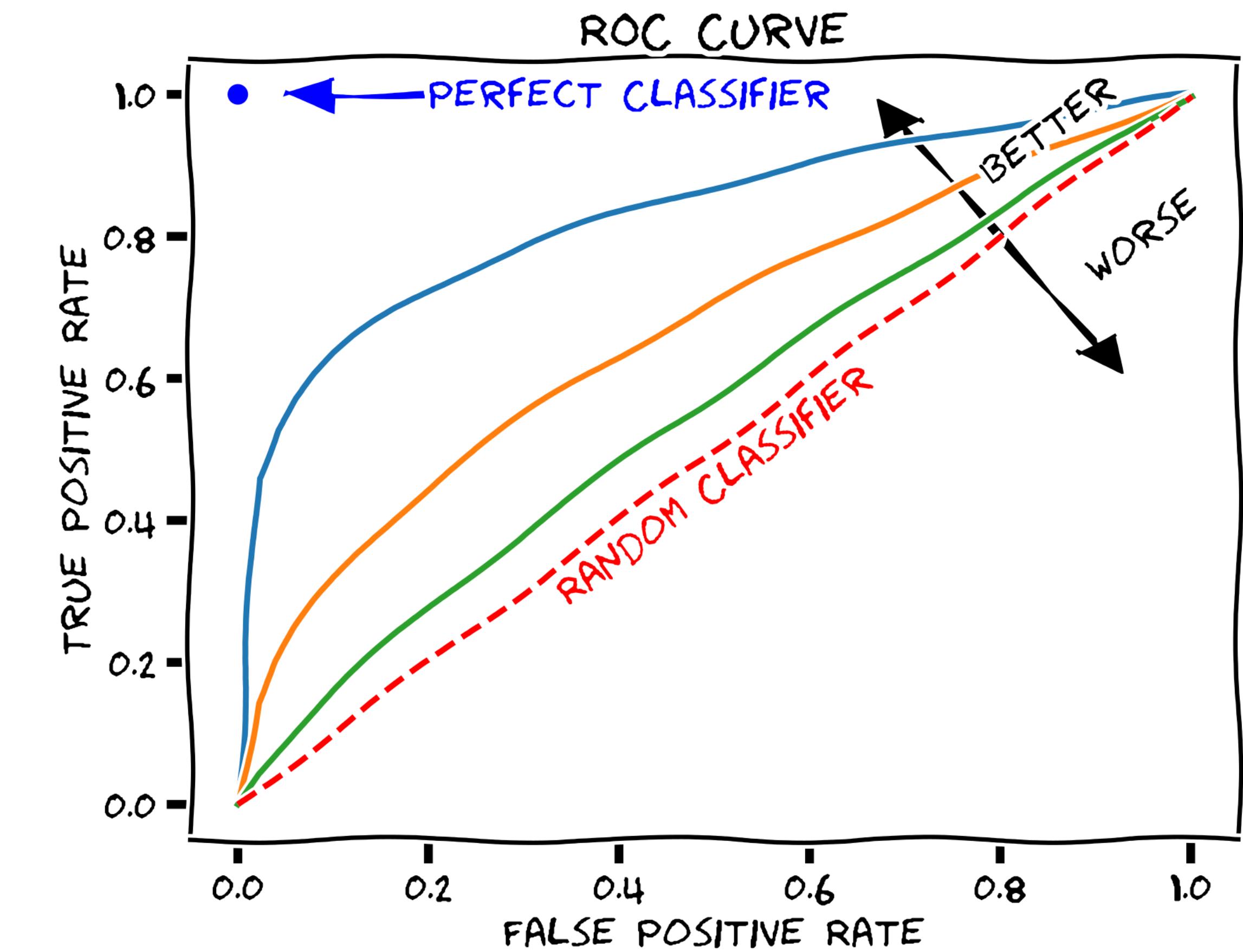
$$Recall = \frac{TP}{P} = \frac{2}{3}$$

$$FPRate = \frac{FP}{N} = \frac{1}{2}$$

Performance Metrics

ROC Curve

- **ROC**: plot that illustrates the ability of a binary classifier system as its threshold is varied.
- The **area under the ROC curve (AUC)** can act as a metric.
 - The maximum AUC is 1.
 - Random predictions give AUC = 0.5



<http://playground.tensorflow.org/>

- What is an input representation?
- What is a feature?
- Handling different types of features
- Missing values
- Feature expansion
- Examples of representations

What is an input representation in ML?

A representation is a mathematical form (e.g., a vector)

- It describes an observation in the real-world (e.g., an image, waveforms, signals, ...)
- It is used for subsequent steps (e.g., a classifier) to produce the outcome of interest (e.g., recognizing objects)
- It is often more compact than the original observation (lower dimensionality)
- It is potentially more robust to nuisances
- With a good representation, subsequent steps should be easier

“Solving a problem simply means representing it so as to make the solution transparent.”

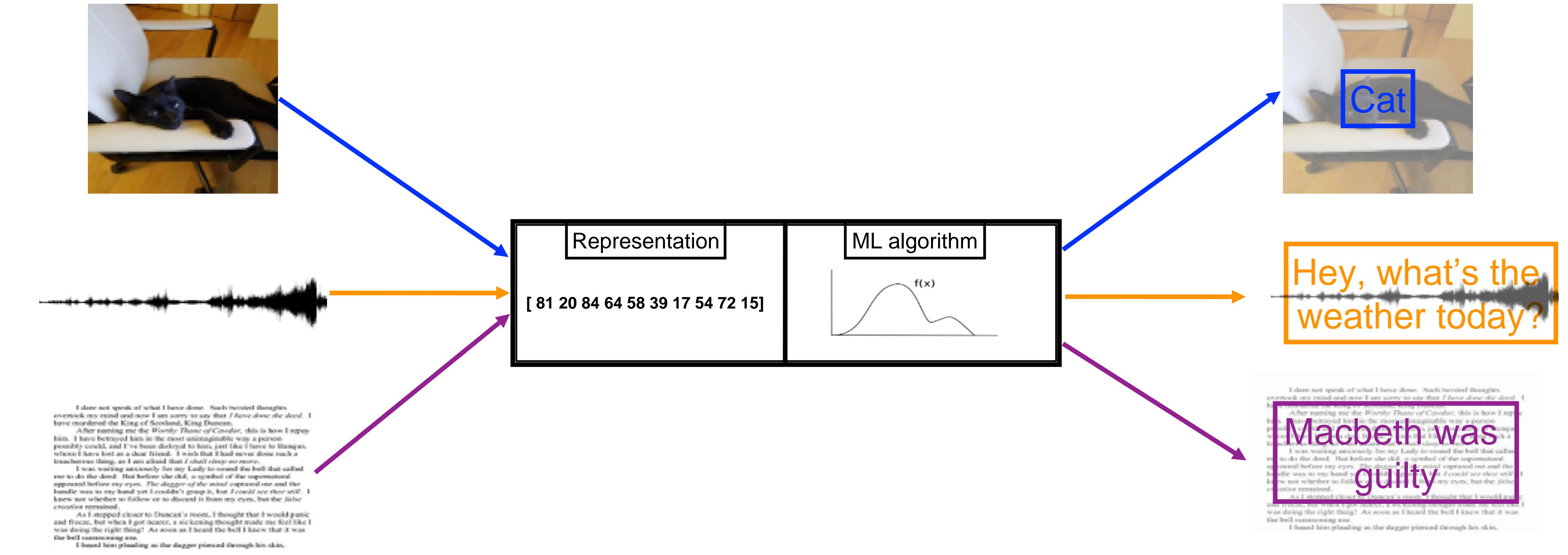
- H. Simon, Sciences of the Artificial -

What is an input representation in ML?

“Solving a problem simply means representing it so as to make the solution transparent.”

- H. Simon, Sciences of the Artificial -

The machine learning pipeline



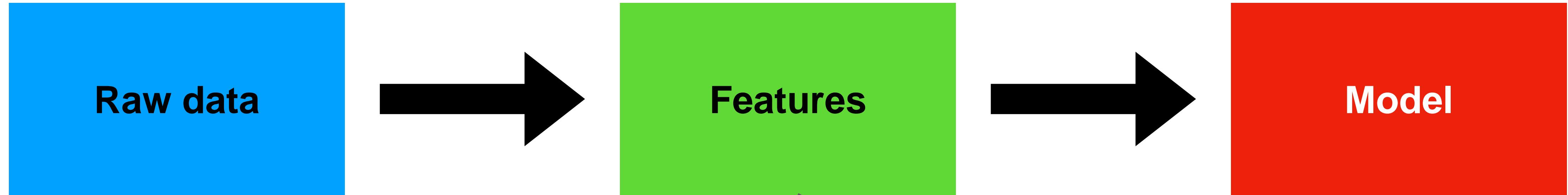
What is a Feature?

**A feature vector is a representation,
i.e., a mathematical form that describes an observation in the real-world...**

What is a Feature?

Feature engineering

Feature engineering means transforming **raw data** into a **feature vector** that represents the underlying data well

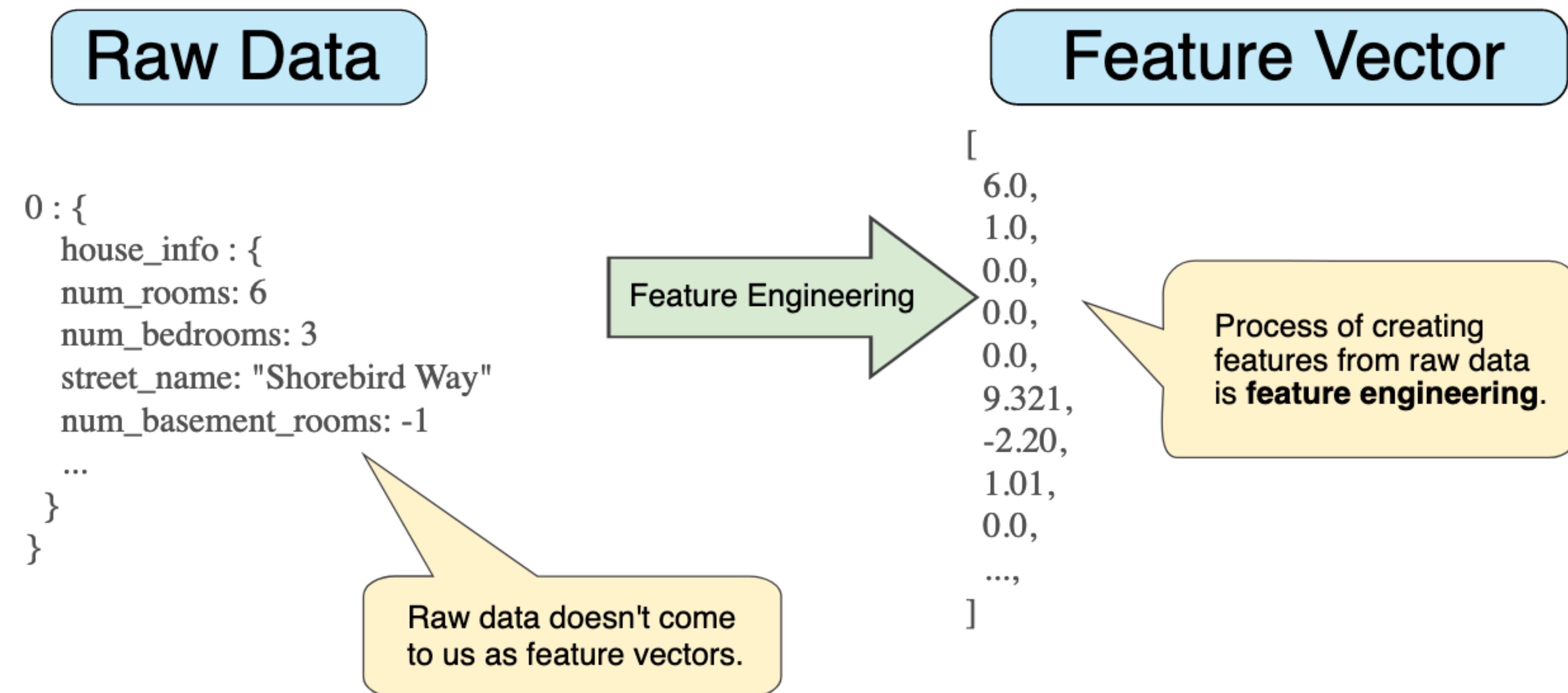


Designing clever features is a key part of the machine learning pipeline

For simple models, most of the “heavy lifting” is done there

Features

Feature engineering



Features

Types of features

Different types of features:

- **Numerical / continuous**
 - e.g., height, temperature, price, ...
- **Ordinal**
 - e.g., “like”, “somewhat like”, “neutral”, “somewhat dislike”, “dislike”
- **Categorical**
 - e.g., color, species, ...

Feature type	Order	Scale
Numerical	Yes	Yes
Ordinal	Yes	No
Categorical	No	No

Features

Preprocessing

Preprocessing: the process of transforming raw feature vectors into a representation that is more suitable for ML algorithms

Techniques differ depending on type of feature:

- Numerical, ordinal and categorical features need to be handled differently

Numerical features

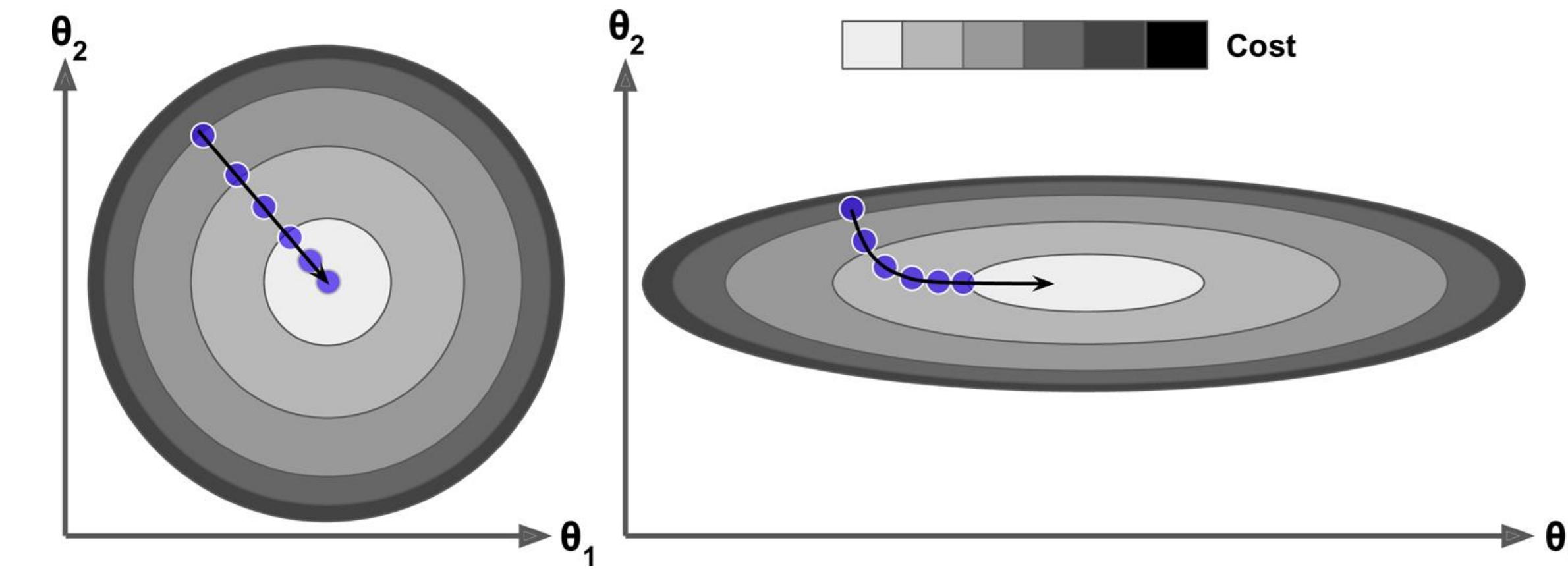
Numerical features

Data normalization

Data normalization / feature scaling: Normalize features (bring them all to the same scale)

Crucial step in preprocessing:

- Many classifiers (such as KNN) rely on distance metrics
- Gradient descent will converge faster
- Coefficients are penalized appropriately (in the case where regularization is applied)



A. Géron “[Hands-on Machine Learning with Scikit-Learn and TensorFlow](#)”, 2017

Numerical features

Data normalization - Example

Example:

KNN with Palmer Penguins dataset

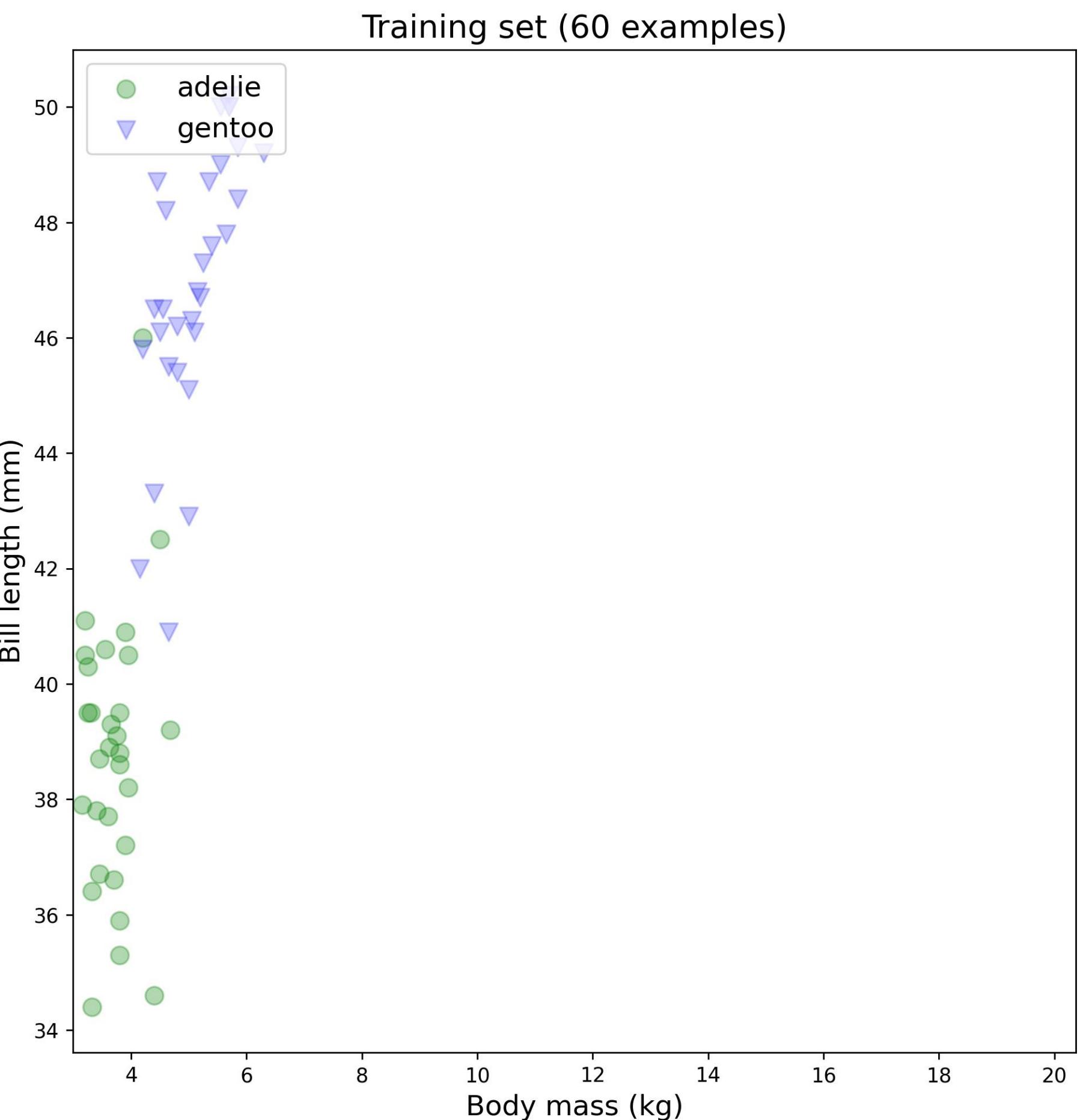
Features: body mass & bill length

Q: Which feature matters the most for the distance metric?

A:

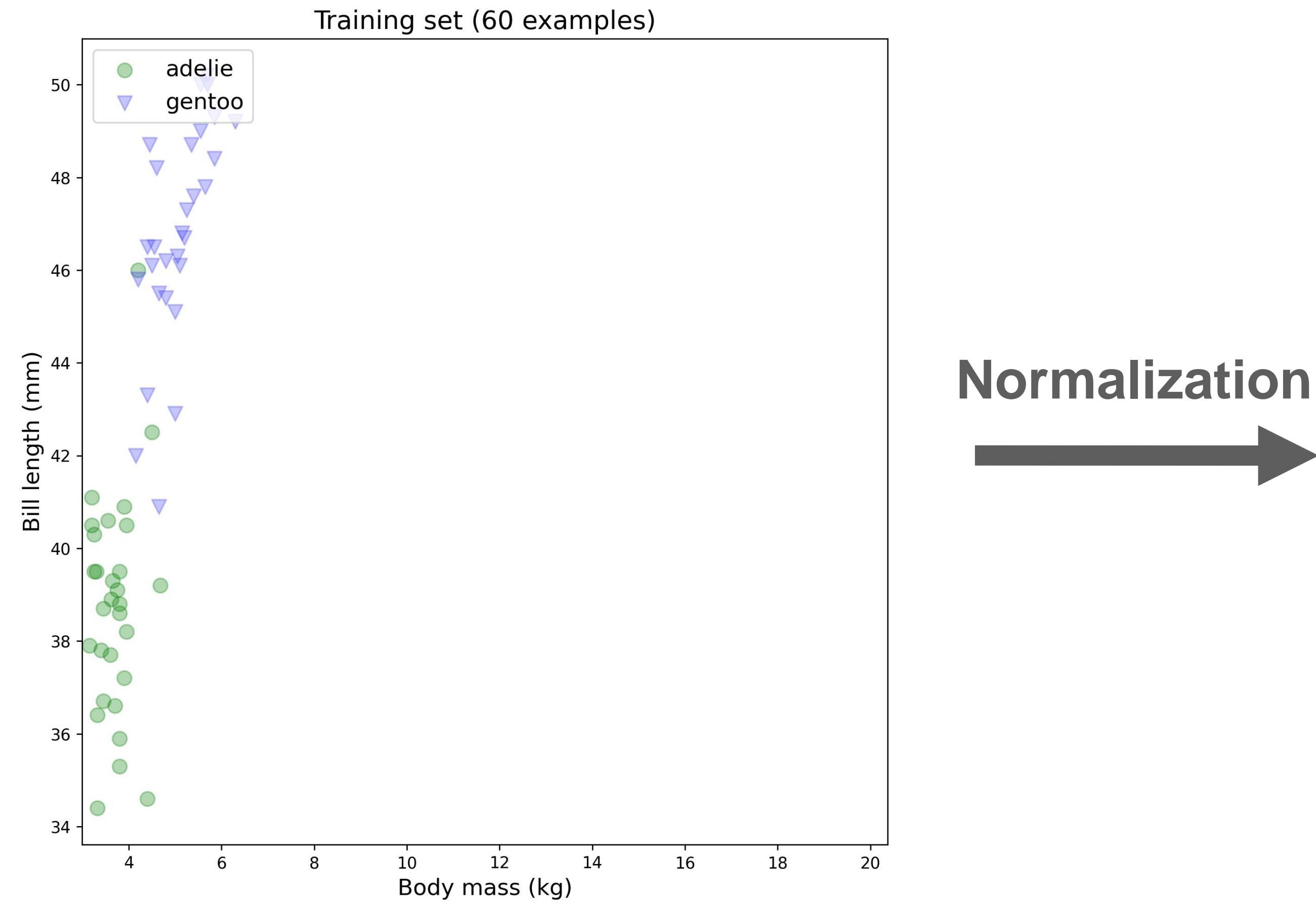
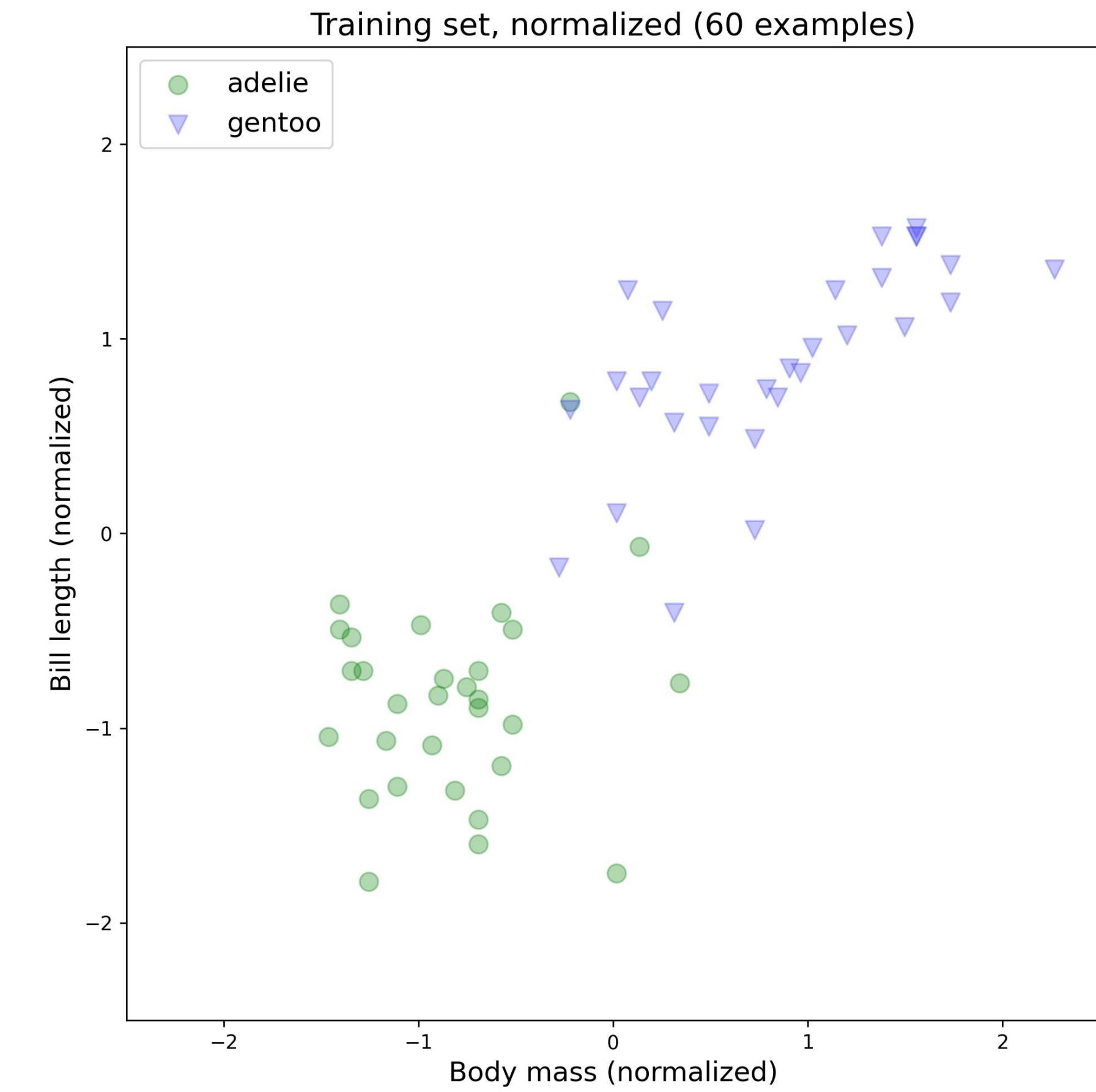
- If body mass in **g** and bill length in **m**
→ **body mass** matters more
- If body mass in **kg** and bill length in **mm**
→ **bill length** matters more

With normalization, the units of the features stop playing an important role in the model accuracy



Numerical features

Data normalization - Example



Numerical features

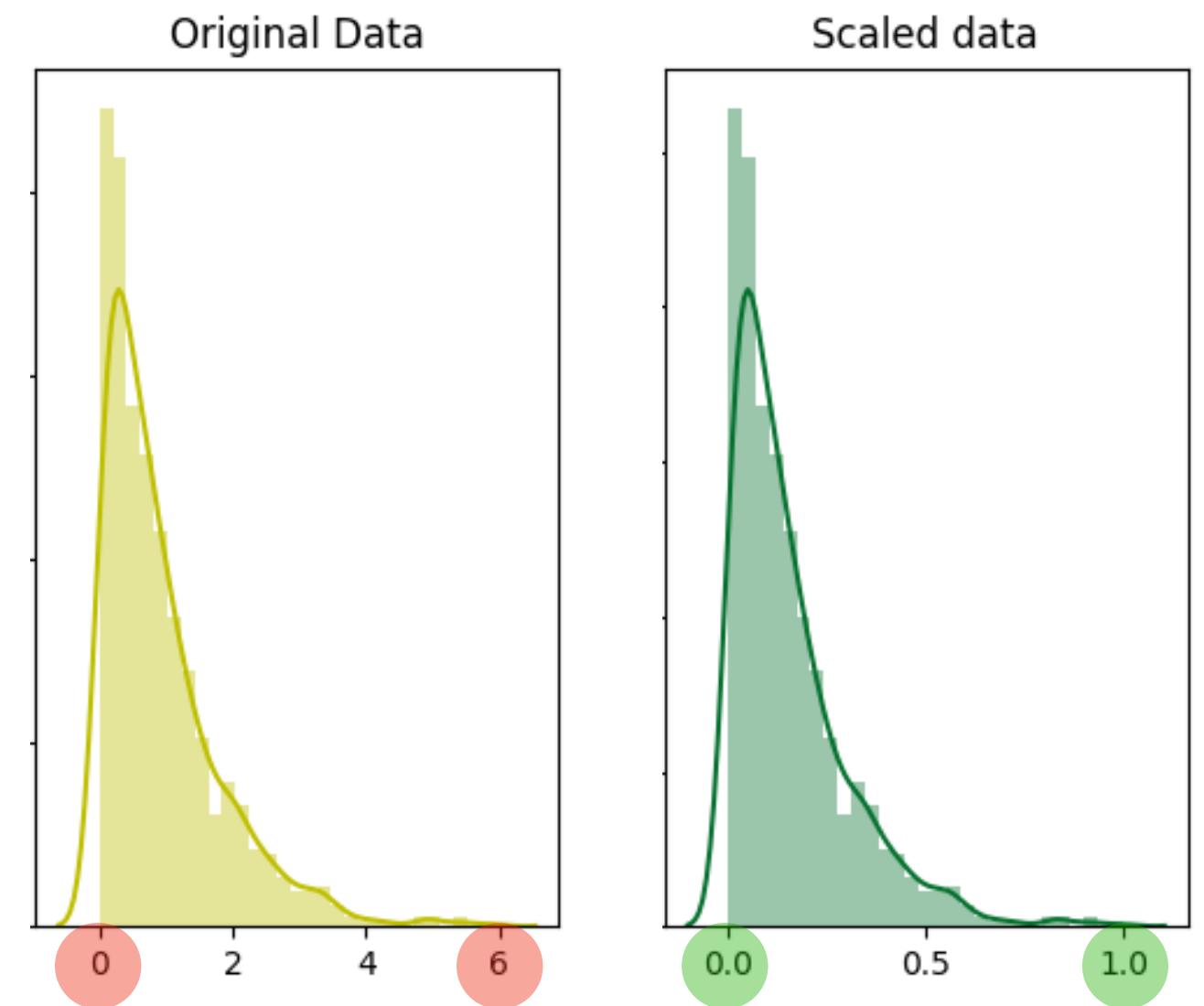
Data normalization - Methods

Min-max scaling:

Scale each feature to the range [0, 1]

For each feature:

$$x_{norm} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

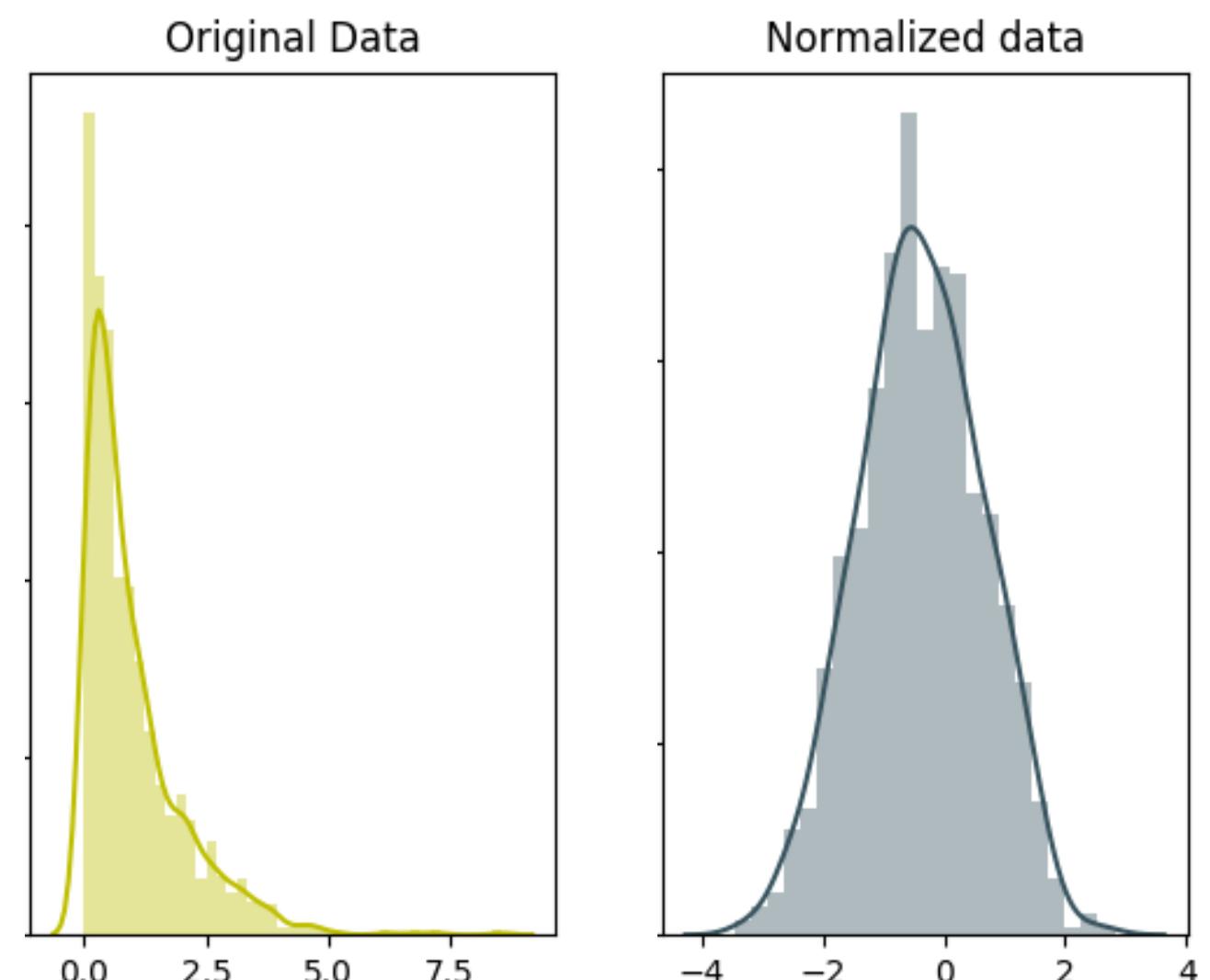


Z-Score Normalization / Standardization:

Set mean of each feature (μ) to 0, standard deviation (σ) to 1

For each feature:

$$x_{norm} = \frac{x - \mu_x}{\sigma_x}$$



Numerical features

Data normalization - Outliers

Features may have outliers or follow some heavy-tailed distribution

- e.g., **urban area population**:
 - most urban areas have a few thousands inhabitants
 - a handful of urban areas have tens of millions of inhabitants (New York, Tokyo, ...)

Numerical features

Data normalization - Outliers

If the dataset has outliers, then:

- With **min-max** scaling:
 - typical values are scaled to a very small interval
- With **Z-score** standardization:
 - mean & standard deviation is not meaningful for heavy-tailed data
 - outliers will still have very large values

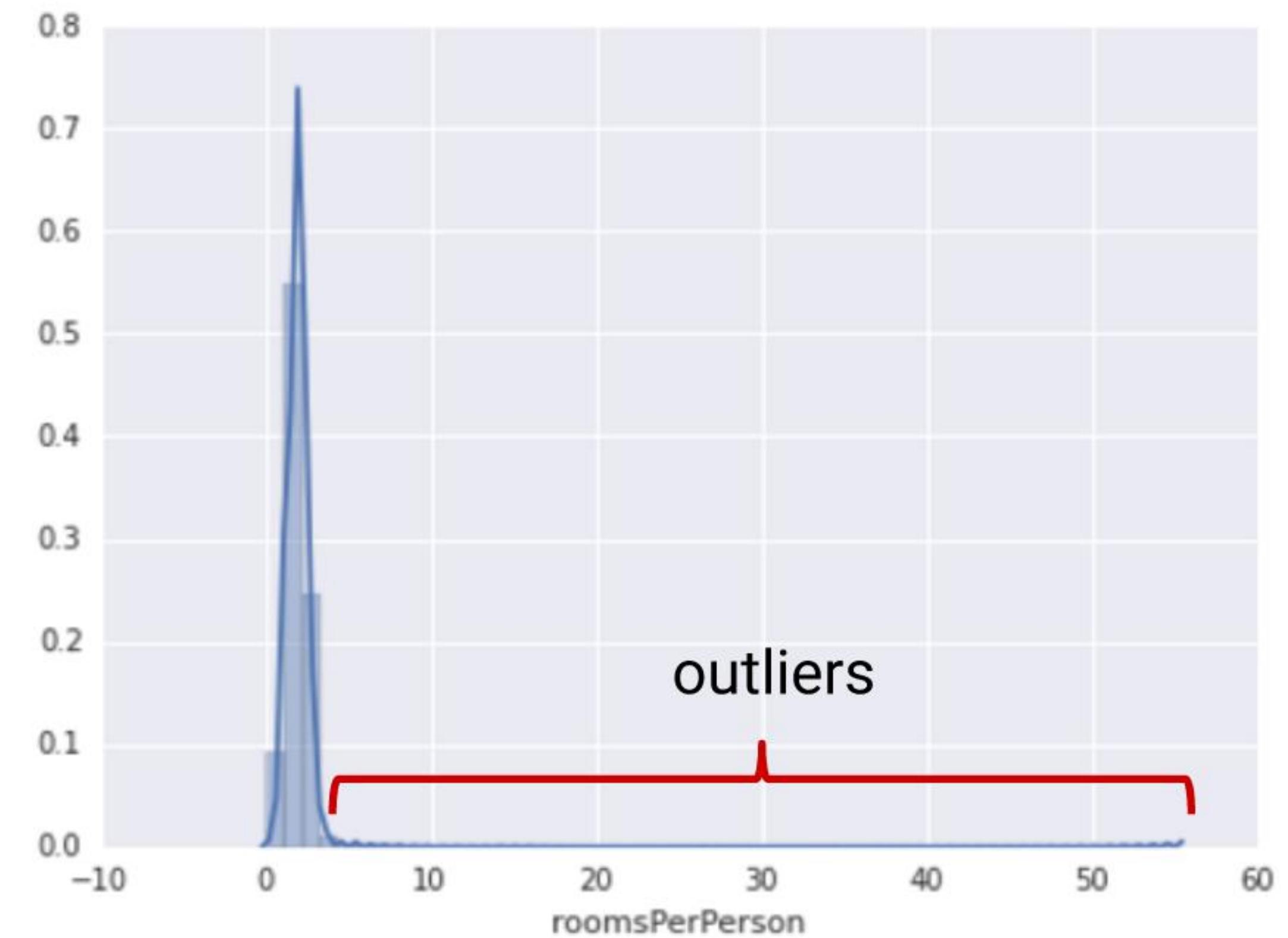


Image credit: [Google Machine Learning Crash Course](#)

=> Outliers affect the quality of the scaling

Numerical features

Handling outliers

To handle outliers:

Logarithmic scaling: take the log of every value

- \triangle make sure all values are positive
- e.g., $x = [1, 10, 5, 600]$
 $\rightarrow \log(x) = [0, 2.3, 1.6, 6.4]$

Value clipping: clip all values above / below an arbitrary threshold

- e.g., for clip value of [-10, 10]:
 - $x = [0, -3, -1294, 5, 10320]$
 $\rightarrow \text{clip}(x) = [0, -3, -10, 5, 10]$

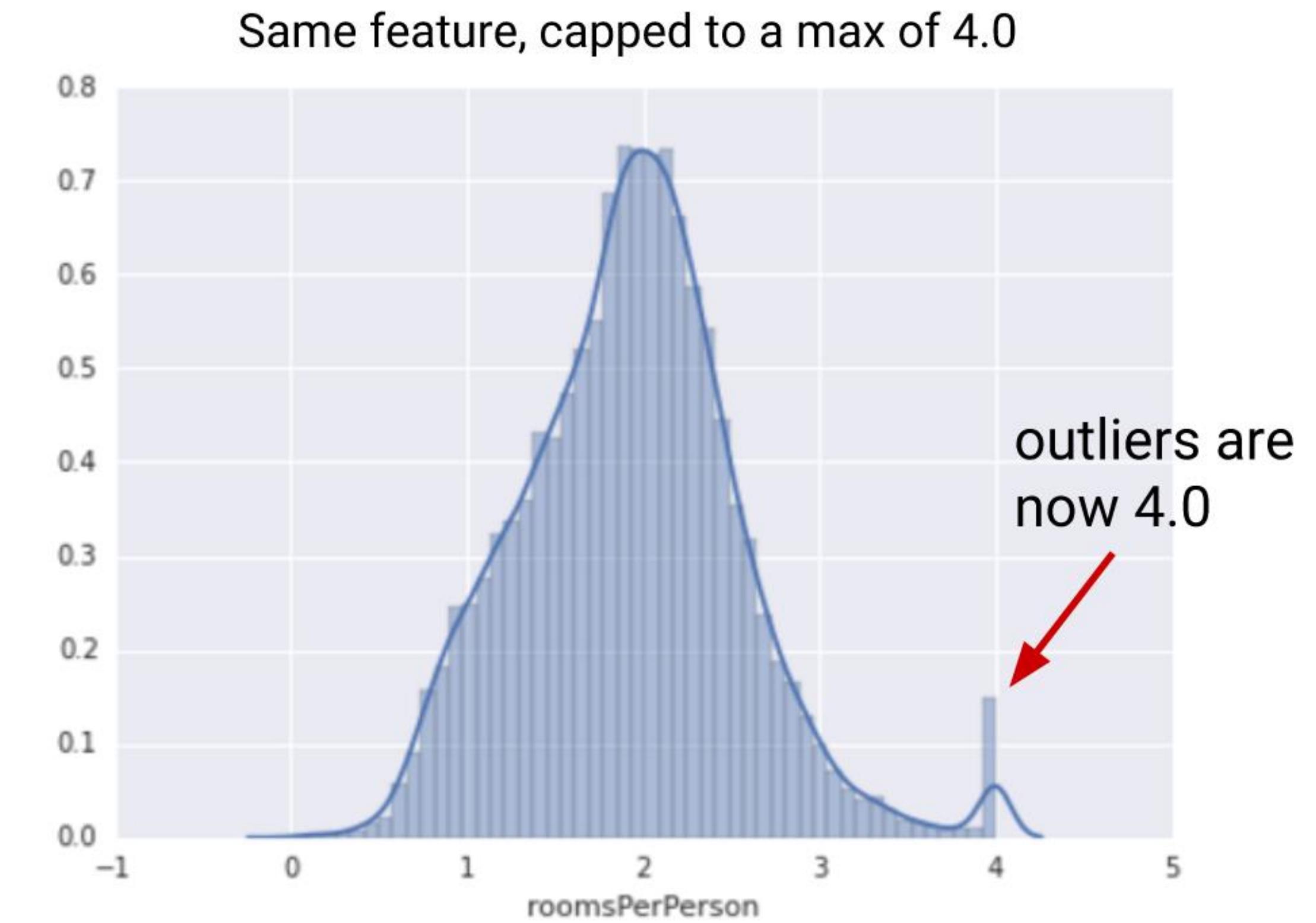


Image credit: [Google Machine Learning Crash Course](#)

Numerical features

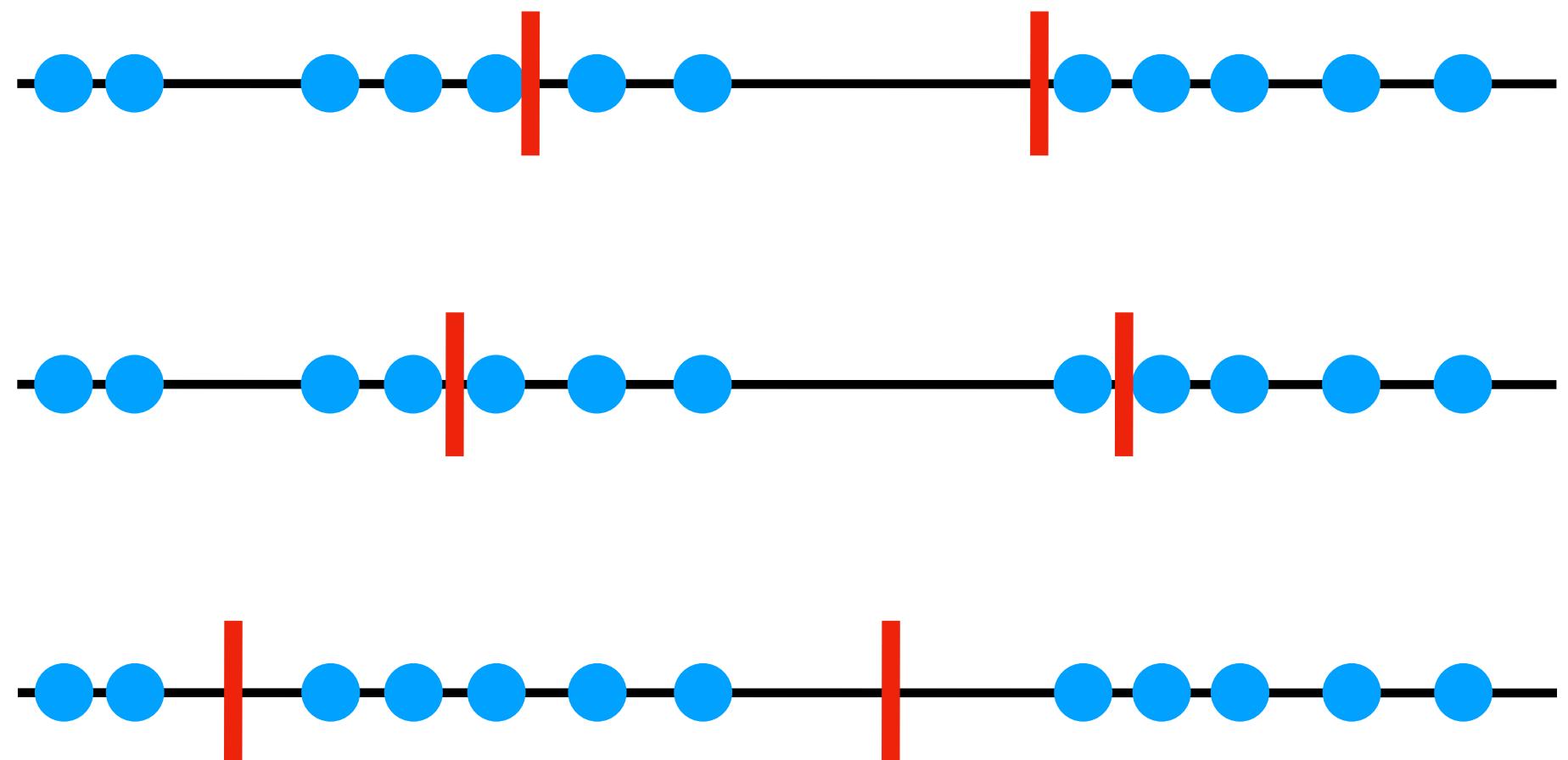
Binning

Binning / discretization: partition continuous features into discrete values

- e.g., **age**: instead of using each person's age as a number, we may want to use age ranges instead: 0-9, 10-19, 20-35, ...

Common types of binning:

- **Uniform**: all bins have identical widths
- **Quantile**: all bins have the same number of points
- **Clustered**: a clustering algorithm (seen later in this course) is used to separate values



Next week

- Continue on the role of representation
- Deep learning

End

Features

Resources

- Google Machine Learning Crash Course:
<https://developers.google.com/machine-learning/crash-course/representation/feature-engineering>
- scikit-learn preprocessing documentation:
<https://scikit-learn.org/stable/modules/preprocessing.html>
- Kaggle feature engineering tutorial:
<https://www.kaggle.com/learn/feature-engineering>

Glossary

- **KNN: K-Nearest Neighbors**
- **ML: Machine Learning**
- **RMSE: Root Mean Square Error**
- **MSE: Mean Square Error**
- Toy problem/example: a problem without scientific interest but useful for illustrating a concept

Appendix

Notation

\mathbb{X} : A set (ex: dataset)

\mathbf{X} : Features of \mathbb{X}

\mathbf{Y} : Labels of \mathbb{X}

$\mathbf{x}^{(i)}$: Element i of the set \mathbb{X} (ex: datapoint)

a : A scalar

\mathbf{a} : A vector

\mathbf{A} : A matrix or a tensor

a_i : Element i of vector \mathbf{a} , with indexing starting at 1

$A_{i,j}$: Element (i, j) of matrix \mathbf{A}

$\mathbf{A}_{i,:}$: Row i of matrix \mathbf{A}

$\mathbf{A}_{:i}$: Column i of matrix \mathbf{A}

$A_{i,j,k}$: Element (i, j, k) of a 3D tensor \mathbf{A}

$\mathbf{A}_{:,:,i}$: 2D slice of a 3D tensor \mathbf{A}

Appendix

Cost Function - Disambiguation

In this class:

J : cost function

=> average of loss over a single iteration

In ML literature:

- loss function L
- cost function J
- error function E

are sometimes used interchangeably, and
sometimes used like they are in this class